This work introduces a refinement of the Parsimonious Model for fitting a Gaussian Mixture. The improvement is based on the consideration of groupings of the covariance matrices according to a criterion, such as sharing Principal Directions. This and other similarity criteria that arise from the spectral decomposition of a matrix are the bases of the Parsimonious Model. The classification can be achieved with simple modifications of the CEM (Classification Expectation Maximization) algorithm, using in the M step suitable estimation methods known for parsimonious models. This approach leads to propose Gaussian Mixture Models for model-based clustering and discriminant analysis, in which covariance matrices are clustered according to a parsimonious criterion, creating intermediate steps between the fourteen widely known parsimonious models. The added versatility not only allows us to obtain models with fewer parameters for fitting the data, but also provides greater interpretability. We show its usefulness for model-based clustering and discriminant analysis, providing algorithms to find approximate solutions verifying suitable size, shape and orientation constraints, and applying them to both simulation and real data examples.
翻译:这项工作引入了用于安装高斯混合体的“ 光谱模型” 的精细化。 改进的基础是根据共享主方向等标准考虑共变矩阵的组别, 以及由于光谱分解一个矩阵而形成的其他类似标准是“ 光谱分解模型” 的基础。 简单修改CEM( 分解预期最大化) 算法( CEM( 分类预期最大化) ), 使用在M 级中已知的对相色模型的合适估计方法, 就可以实现分类。 这种方法导致提出基于模型的组群和相异分析的“ 高斯混合模型 ”, 使共变式矩阵按照相混合标准组合, 在14个广为人知的相异模型之间创造中间步骤。 增加的多功能不仅使我们能够获得模型,而数据适应参数较少,而且提供更大的解释性。 我们展示了它对于基于模型的集组群集和对共性分析的有用性, 提供算法, 以找到核实适当大小、 形状和方向制约的近似解决办法, 并将它们应用于模拟和真实数据示例。