Arabic language lacks semantic datasets and sense inventories. The most common semantically-labeled dataset for Arabic is the ArabGlossBERT, a relatively small dataset that consists of 167K context-gloss pairs (about 60K positive and 107K negative pairs), collected from Arabic dictionaries. This paper presents an enrichment to the ArabGlossBERT dataset, by augmenting it using (Arabic-English-Arabic) machine back-translation. Augmentation increased the dataset size to 352K pairs (149K positive and 203K negative pairs). We measure the impact of augmentation using different data configurations to fine-tune BERT on target sense verification (TSV) task. Overall, the accuracy ranges between 78% to 84% for different data configurations. Although our approach performed at par with the baseline, we did observe some improvements for some POS tags in some experiments. Furthermore, our fine-tuned models are trained on a larger dataset covering larger vocabulary and contexts. We provide an in-depth analysis of the accuracy for each part-of-speech (POS).
翻译:阿拉伯语缺少语义数据集和感官目录。阿拉伯语最常见的语义标签数据集是ArabGlossBERT,这是一个相对较小的数据集,由阿拉伯词典收集的167K背景光谱配对(约60K正对和107K负对)组成。本文通过使用(阿拉伯文-英文-阿拉伯文)机器回译,对阿拉伯GlossBERT数据集进行了浓缩。放大将数据集的尺寸提高到352K对(149K正对和203K负对)。我们用不同的数据配置来衡量增强的影响,以微调显示BERT对目标感知核查(TSV)任务的影响。总体而言,不同数据配置的准确度在78%至84%之间。虽然我们的做法与基线相当,但我们在一些实验中观察到了某些POS标记的一些改进。此外,我们经过微调的模型还接受了涵盖较大词汇和背景的较大数据集的培训。我们对每个部分的准确性进行了深入分析。