Despite recent progress on image-based virtual try-on, current methods are constraint by shared warping networks and thus fail to synthesize natural try-on results when faced with clothing categories that require different warping operations. In this paper, we address this problem by finding clothing category-specific warping networks for the virtual try-on task via Neural Architecture Search (NAS). We introduce a NAS-Warping Module and elaborately design a bilevel hierarchical search space to identify the optimal network-level and operation-level flow estimation architecture. Given the network-level search space, containing different numbers of warping blocks, and the operation-level search space with different convolution operations, we jointly learn a combination of repeatable warping cells and convolution operations specifically for the clothing-person alignment. Moreover, a NAS-Fusion Module is proposed to synthesize more natural final try-on results, which is realized by leveraging particular skip connections to produce better-fused features that are required for seamlessly fusing the warped clothing and the unchanged person part. We adopt an efficient and stable one-shot searching strategy to search the above two modules. Extensive experiments demonstrate that our WAS-VTON significantly outperforms the previous fixed-architecture try-on methods with more natural warping results and virtual try-on results.
翻译:尽管在基于图像的虚拟试运行方面最近取得了进展,但目前的方法仍然受到共享扭曲网络的制约,因此,在面对需要不同扭曲操作的服装类别时,无法将自然试运行结果合成。在本文件中,我们通过通过神经结构搜索(NAS)寻找虚拟试运行任务的服装分类扭曲网络来解决这一问题。我们引入了NAS-警告模块,并精心设计了双级搜索空间,以确定最佳网络水平和运行水平的流量估计结构。鉴于网络搜索空间,包含不同数量的作战区块,以及操作级搜索空间与不同的演动操作,我们联合学习了重复的扭曲细胞和专为服装与人对齐的共动操作。此外,我们建议了NAS-Fus模块,以合成更自然的最后试运行结果,这是通过利用特别的跳动连接来产生更常用的功能,这些功能是无缝使用扭曲的服装和不变的人员部分所需要的。我们采用了高效和稳定的一发搜索战略,以搜索上述两个模块。广泛的实验表明,我们ASS-V-FOR-FOR-ST-T-STOR-T-STOR-A-T-I-I-ISTRAND-IST-IST-IST-I-IRT-IRT-IRT-IRT-I-IRT-IRT-IRT-IRT-I)实现前的试验结果。