In this paper we develop a fully nonconforming virtual element method (VEM) of arbitrary approximation order for the two dimensional Cahn-Hilliard equation. We carry out the error analysis for the semidiscrete (continuous-in-time) scheme and verify the theoretical convergence result via numerical experiments. We present a fully discrete scheme which uses a convex splitting Runge-Kutta method to discretize in the temporal variable alongside the virtual element spatial discretization.
翻译:在本文中,我们针对二维Cahn-Hilliard方程开发了一个任意近似阶数的完全不相容虚拟元方法(VEM)。我们对半离散(时间连续)方案进行误差分析,并通过数值实验验证了理论收敛结果。我们提出了一个完全离散方案,该方案使用凸拆分龙格-库塔方法来离散化时间变量,同时使用虚拟元空间离散化。