Graph convolutional networks (GCNs) have emerged as dominant methods for skeleton-based action recognition. However, they still suffer from two problems, namely, neighborhood constraints and entangled spatiotemporal feature representations. Most studies have focused on improving the design of graph topology to solve the first problem but they have yet to fully explore the latter. In this work, we design a disentangled spatiotemporal transformer (DSTT) block to overcome the above limitations of GCNs in three steps: (i) feature disentanglement for spatiotemporal decomposition;(ii) global spatiotemporal attention for capturing correlations in the global context; and (iii) local information enhancement for utilizing more local information. Thereon, we propose a novel architecture, named Hierarchical Graph Convolutional skeleton Transformer (HGCT), to employ the complementary advantages of GCN (i.e., local topology, temporal dynamics and hierarchy) and Transformer (i.e., global context and dynamic attention). HGCT is lightweight and computationally efficient. Quantitative analysis demonstrates the superiority and good interpretability of HGCT.


翻译:273. 大部分研究侧重于改进图表地形学的设计以解决第一个问题,但尚未充分探索第一个问题。在这项工作中,我们设计了一个分解的随机变压器(DSTT)块,以在三个步骤中克服GCN的上述局限性:(一) 特征分解,以便进行时空分解;(二) 全球空间关注,以捕捉全球环境的相互关系;(三) 本地信息,以利用更多的当地信息。我们为此建议了一个叫作高层次的图象骨骼变形器(HGCT)的新结构,以利用GCN的互补优势(即,当地地形学、时间动态和等级)和变形器(即,全球背景和动态关注)。HGCT是轻度和计算效率的。Q定量分析表明HGC的优越性和良好解释性。

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
311+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员