Our main goal in this study is to propose a transfer learning based method for COVID-19 detection from Computed Tomography (CT) images. The transfer learning model used for the task is a pretrained Xception model. Both model architecture and pre-trained weights on ImageNet were used. The resulting modified model was trained with 128 batch size and 224x224, 3 channeled input images, converted from original 512x512, grayscale images. The dataset used is a the COV19-CT-DB. Labels in the dataset include COVID-19 cases and Non-COVID-19 cases for COVID-1919 detection. Firstly, a accuracy and loss on the validation partition of the dataset as well as precision recall and macro F1 score were used to measure the performance of the proposed method. The resulting Macro F1 score on the validation set exceeded the baseline model.
翻译:我们这项研究的主要目标是提出一种基于转移的学习方法,用于从光学成像(CT)图像中探测COVID-19。用于这项任务的转移学习模式是一个预先训练的Xception模型。使用了模型结构和图像网络上预先训练的重量。因此,对修改后的模型进行了128批量尺寸和224x224、3个带式输入图象的培训,这些图象从原始的512x512、灰度图像转换而成。使用的数据集是COV19-CT-DB。数据集中的标签包括COVID-19案例和COVID-19案例,用于COVID-19的检测。首先,对数据集的验证分布以及精确回溯和宏F1评分的准确性和损失,用来测量拟议方法的性能。由此得出的验证集的McrocF1分数超过了基线模型。