Detecting anomalous regions in images is a frequently encountered problem in industrial monitoring. A relevant example is the analysis of tissues and other products that in normal conditions conform to a specific texture, while defects introduce changes in the normal pattern. We address the anomaly detection problem by training a deep autoencoder, and we show that adopting a loss function based on Complex Wavelet Structural Similarity (CW-SSIM) yields superior detection performance on this type of images compared to traditional autoencoder loss functions. Our experiments on well-known anomaly detection benchmarks show that a simple model trained with this loss function can achieve comparable or superior performance to state-of-the-art methods leveraging deeper, larger and more computationally demanding neural networks.
翻译:检测图像中的异常区域是工业监测中经常遇到的一个问题,一个相关的例子是分析在正常条件下符合特定质地的组织和其他产品,而缺陷则导致正常模式的变化。我们通过培训深层自动编码器来解决异常检测问题,我们表明,采用基于复杂波形结构相似性(CW-SSIM)的损失函数,与传统的自动编码损失功能相比,这类图像的检测性能优于传统的自动编码损失功能。我们关于已知异常检测基准的实验表明,接受过这种损失功能培训的简单模型可以达到与利用更深、更大和计算要求更高的神经网络的最先进方法的可比或优异性。