Learning to autonomously assemble shapes is a crucial skill for many robotic applications. While the majority of existing part assembly methods focus on correctly posing semantic parts to recreate a whole object, we interpret assembly more literally: as mating geometric parts together to achieve a snug fit. By focusing on shape alignment rather than semantic cues, we can achieve across-category generalization. In this paper, we introduce a novel task, pairwise 3D geometric shape mating, and propose Neural Shape Mating (NSM) to tackle this problem. Given the point clouds of two object parts of an unknown category, NSM learns to reason about the fit of the two parts and predict a pair of 3D poses that tightly mate them together. We couple the training of NSM with an implicit shape reconstruction task to make NSM more robust to imperfect point cloud observations. To train NSM, we present a self-supervised data collection pipeline that generates pairwise shape mating data with ground truth by randomly cutting an object mesh into two parts, resulting in a dataset that consists of 200K shape mating pairs from numerous object meshes with diverse cut types. We train NSM on the collected dataset and compare it with several point cloud registration methods and one part assembly baseline. Extensive experimental results and ablation studies under various settings demonstrate the effectiveness of the proposed algorithm. Additional material is available at: https://neural-shape-mating.github.io/
翻译:自动组装形状是许多机器人应用的关键技能。 虽然大多数现有部件组装方法大多侧重于正确配置语义部分以重建整个对象, 但我们更直截了当地解释组装: 将几何部分配在一起, 以达到粘合性。 我们通过侧重于形状对齐而不是语义提示, 就可以实现跨类的概括化。 在本文中, 我们引入了一个新任务, 配对 3D 几何形状配配方, 并提议神经形状配方( NSM) 来解决这个问题。 鉴于一个未知类别的两个对象部分的点云, NSM 学会如何解释这两个部分的合适性, 并预测三维部分的对齐配合在一起。 我们把NSM 培训与一个隐含的形状重建任务结合起来, 使NSM 更强大到不完善的云色观察。 为了培训NSM, 我们推出一个自我监督的数据收集管道, 通过随机切换地将一个对象网格网格组合成两个部分, 导致由200K制成两个对象配方构成两个部分。 我们通过多个对象制配方构成ND配方结构的数据集, 将多个对象在多个天平质化模型中进行一系列的模型中, 并进行一系列的测试。 在多个的模型中, 在多个实验式的模型中, 在多个实验模型中, 将一系列的模型中, 在多个实验模型中, 将一系列的模型中, 将一系列的模型中将一系列的模型中将一系列的模型进行不同的实验式的模型进行不同的实验式的模型将一系列实验式的模型进行。