The paper proposes a method to effectively fuse multi-exposure inputs and generate high-quality high dynamic range (HDR) images with unpaired datasets. Deep learning-based HDR image generation methods rely heavily on paired datasets. The ground truth images play a leading role in generating reasonable HDR images. Datasets without ground truth are hard to be applied to train deep neural networks. Recently, Generative Adversarial Networks (GAN) have demonstrated their potentials of translating images from source domain X to target domain Y in the absence of paired examples. In this paper, we propose a GAN-based network for solving such problems while generating enjoyable HDR results, named UPHDR-GAN. The proposed method relaxes the constraint of the paired dataset and learns the mapping from the LDR domain to the HDR domain. Although the pair data are missing, UPHDR-GAN can properly handle the ghosting artifacts caused by moving objects or misalignments with the help of the modified GAN loss, the improved discriminator network and the useful initialization phase. The proposed method preserves the details of important regions and improves the total image perceptual quality. Qualitative and quantitative comparisons against the representative methods demonstrate the superiority of the proposed UPHDR-GAN.
翻译:本文建议了一种方法,以有效整合多接触投入,并生成高质量的高动态图像,使其与不完善的数据集相结合。深度学习的《人类发展报告》图像生成方法在很大程度上依赖于配对的数据集。地面真相图像在产生合理的《人类发展报告》图像方面起着主导作用。没有地面真相的数据集很难用于深层神经网络的培训。最近,General Aversarial Network(GAN)展示了在没有对齐实例的情况下将图像从源域X转换到目标域Y的潜力。在本文中,我们建议建立一个基于GAN的网络,在解决这类问题的同时产生可喜的《人类发展报告》结果,名为UPHDR-GAN。拟议的方法缓解了对齐数据集的制约,并学习了从LDR域到《人类发展报告》域的绘图。虽然缺少对齐数据,但UPHDR-GAN能够恰当地处理由于移动对象或错配对导致的图像而导致的幽灵制品,改进了GAN网络和有用的初始化阶段。拟议的方法保护了重要区域和图像的高级性。拟议方法,并改进了UPDRQ。