In representation learning, a common approach is to seek representations which disentangle the underlying factors of variation. Eastwood & Williams (2018) proposed three metrics for quantifying the quality of such disentangled representations: disentanglement (D), completeness (C) and informativeness (I). In this work, we first connect this DCI framework to two common notions of linear and nonlinear identifiability, thereby establishing a formal link between disentanglement and the closely-related field of independent component analysis. We then propose an extended DCI-ES framework with two new measures of representation quality - explicitness (E) and size (S) - and point out how D and C can be computed for black-box predictors. Our main idea is that the functional capacity required to use a representation is an important but thus-far neglected aspect of representation quality, which we quantify using explicitness or ease-of-use (E). We illustrate the relevance of our extensions on the MPI3D and Cars3D datasets.
翻译:Eastwood & Williams (2018年)提出了三种衡量标准,用以量化这种分解式表述的质量:分解(D)、完整性(C)和资料性(I)。 在这项工作中,我们首先将DCI框架与线性和非线性可识别性这两个共同概念联系起来,从而在分解和独立组成部分分析的密切相关领域之间建立正式联系。我们然后提出一个扩展的DCI-ES框架,其中含有两种新的代表性质量衡量标准----明确性(E)和大小(S)----并指明如何计算黑盒预测器的D和C。我们的主要想法是,使用代表制所需的功能能力是代表制质量的一个重要方面,但却是远远被忽视的方面,我们用明确性或易用(E)加以量化。我们用MPI3D和Cars3D数据集来说明我们扩展的关联性。