In this paper we characterise the long-run behaviour of the replicator dynamic in two-player zero-sum games (symmetric or otherwise). Specifically, we prove that every zero-sum game possesses a unique global attractor, which we then characterise. Most surprisingly, this attractor depends only on each player's preference order over their own strategies and not on the cardinal payoff values. Consequently, it is structurally stable. The attractor is defined by a finite directed graph we call the game's fundamental graph. If the game is symmetric, this graph is a tournament whose nodes are strategies; if the game is not symmetric, this graph is the game's response graph. In both cases the attractor can be computed in time quasilinear in the size of the game. We discuss the consequences of our results on chain recurrence and equilibria in games.
翻译:在本文中,我们用两个玩家零和游戏(对称或其他)来描述复制者动态的长期行为。 具体地说, 我们证明每个零和游戏都拥有独特的全球吸引者, 然后我们就可以描述它。 最令人惊讶的是, 这个吸引者只取决于每个玩家的偏好顺序, 而不是他们自己的策略, 而不是主要报酬值。 因此, 它在结构上是稳定的。 吸引者是由一个有限的定向图表来定义的。 我们称之为游戏的基本图表。 如果游戏是对称, 这个图表就是一场比赛, 其节点是策略; 如果游戏不是对称, 这个图表就是游戏的反应图。 在这两种情况下, 吸引者可以按照游戏大小的时间的准线来计算。 我们讨论我们的结果对游戏中链重复和平衡的影响。