We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix, which may be of independent interest. We then further characterize the second-order equivalence of the sketched pseudoinverse. We also apply our results to the analysis of the sketch-and-project method and to sketched ridge regression. Lastly, we propose a conjecture that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice.
翻译:我们采用随机矩阵理论方法研究随机草图的渐近性,并展示正半定矩阵的正则化草图伪逆与同一矩阵的某个共鸣量的一阶等价性。我们集中关注实值正则化并将之前结果的一个渐近等价性扩展到实际情况,甚至包括负的正则化,其中包括一阶等价性的精确表征和草图矩阵最小非零特征值的精确表征,这可能具有独立的兴趣。然后,我们进一步表征了草图伪逆的二阶等价性。我们还将我们的结果应用于草图和项目方法的分析以及草图岭回归。最后,我们提出了一个猜想,这些结果会推广到渐近自由的草图矩阵,获得正交草图矩阵的相应等价性,并将我们的结果与实践中使用的几种常见草图进行了比较。