Building efficient, accurate and generalizable reduced order models of developed turbulence remains a major challenge. This manuscript approaches this problem by developing a hierarchy of parameterized reduced Lagrangian models for turbulent flows, and investigates the effects of enforcing physical structure through Smoothed Particle Hydrodynamics (SPH) versus relying on neural networks (NN)s as universal function approximators. Starting from Neural Network (NN) parameterizations of a Lagrangian acceleration operator, this hierarchy of models gradually incorporates a weakly compressible and parameterized SPH framework, which enforces physical symmetries, such as Galilean, rotational and translational invariances. Within this hierarchy, two new parameterized smoothing kernels are developed in order to increase the flexibility of the learn-able SPH simulators. For each model we experiment with different loss functions which are minimized using gradient based optimization, where efficient computations of gradients are obtained by using Automatic Differentiation (AD) and Sensitivity Analysis (SA). Each model within the hierarchy is trained on two data sets associated with weekly compressible Homogeneous Isotropic Turbulence (HIT): (1) a validation set using weakly compressible SPH; and (2) a high fidelity set from Direct Numerical Simulations (DNS). Numerical evidence shows that encoding more SPH structure improves generalizability to different turbulent Mach numbers and time shifts, and that including the novel parameterized smoothing kernels improves the accuracy of SPH at the resolved scales.


翻译:建立高效、精确且具有普适性的涡流简化模型仍然是一个重大挑战。本文通过开发一组参数化的涡流Lagrangian简化模型层次结构来解决此问题,并研究了通过SMOOTHED PARTICLE HYDRODYNAMICS方法强制物理结构与依赖神经网络作为通用函数逼近器的效果。从Lagrangian加速度算子的神经网络参数化开始,该模型逐步合并了一个弱可压参数化的SPH框架,以强制物理对称性,如伽利略、旋转和平移不变性。在这个层次结构中,开发了两个新的参数化平滑核,以增加可学习SPH模拟器的灵活性。针对层次结构中的每个模型,我们尝试了不同的损失函数,使用梯度优化最小化这些损失函数,梯度的高效计算是通过自动微分和敏感性分析获得的。每个模型在两个与弱可压均匀各向同性湍流(HIT)相关联的数据集上进行训练:(1)验证集使用弱可压SPH;和(2)高保真度直接数值模拟(DNS)数据集。数值结果显示,编码更多的SPH结构改善了针对不同湍流马赫数和时间移位的泛化性,包括新的参数化平滑核提高了SPH在解析尺度上的精度。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2021年6月14日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
专知会员服务
50+阅读 · 2020年12月14日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员