Graph Neural Networks share with Logic Programming several key relational inference mechanisms. The datasets on which they are trained and evaluated can be seen as database facts containing ground terms. This makes possible modeling their inference mechanisms with equivalent logic programs, to better understand not just how they propagate information between the entities involved in the machine learning process but also to infer limits on what can be learned from a given dataset and how well that might generalize to unseen test data. This leads us to the key idea of this paper: modeling with the help of a logic program the information flows involved in learning to infer from the link structure of a graph and the information content of its nodes properties of new nodes, given their known connections to nodes with possibly similar properties. The problem is known as graph node property prediction and our approach will consist in emulating with help of a Prolog program the key information propagation steps of a Graph Neural Network's training and inference stages. We test our a approach on the ogbn-arxiv node property inference benchmark. To infer class labels for nodes representing papers in a citation network, we distill the dependency trees of the text associated to each node into directed acyclic graphs that we encode as ground Prolog terms. Together with the set of their references to other papers, they become facts in a database on which we reason with help of a Prolog program that mimics the information propagation in graph neural networks predicting node properties. In the process, we invent ground term similarity relations that help infer labels in the test set by propagating node properties from similar nodes in the training set and we evaluate their effectiveness in comparison with that of the graph's link structure. Finally, we implement explanation generators that unveil performance upper bounds inherent to the dataset. As a practical outcome, we obtain a logic program, that, when seen as machine learning algorithm, performs close to the state of the art on the node property prediction benchmark.


翻译:内建网络 与逻辑编程共享多个关键关系推断机制 。 用于培训和评价的数据集可以被视为包含地面术语的数据库事实 。 这样可以建模它们的推论机制, 并使用等效逻辑程序, 从而更好地了解它们如何在参与机器学习进程的实体之间传播信息, 并推断从给定的数据集中可以学到什么的限度, 以及从中可以概括为隐蔽的测试数据。 这让我们找到本文件的关键参考文件 : 在逻辑程序的帮助下建模用于从图表的链接结构及其新节点的信息内容中进行推导的信息流 。 鉴于它们已知的与可能类似属性的节点的连接, 问题不仅在于它们如何在机器学习进程之间传播信息, 并且用来模拟从某个特定数据集中学到的关键信息传播步骤 。 我们测试我们在Ogbn- 编程断层属性上采用的方法, 帮助从图表的链接结构中进行推导算, 并且通过在网络的轨迹中进行推算, 在网络的轨迹中, 将一个预算中, 预算中, 预算中, 预判的预判中, 预判中, 预判中, 预判中, 预判的预判中, 预判中, 预判的预判的预判中, 预判中, 预判的预判中, 预判。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
161+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月2日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
26+阅读 · 2018年2月27日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员