Calibration is still an important issue for user experience in Brain-Computer Interfaces (BCI). Common experimental designs often involve a lengthy training period that raises the cognitive fatigue, before even starting to use the BCI. Reducing or suppressing this subject-dependent calibration is possible by relying on advanced machine learning techniques, such as transfer learning. Building on Riemannian BCI, we present a simple and effective scheme to train a classifier on data recorded from different subjects, to reduce the calibration while preserving good performances. The main novelty of this paper is to propose a unique approach that could be applied on very different paradigms. To demonstrate the robustness of this approach, we conducted a meta-analysis on multiple datasets for three BCI paradigms: event-related potentials (P300), motor imagery and SSVEP. Relying on the MOABB open source framework to ensure the reproducibility of the experiments and the statistical analysis, the results clearly show that the proposed approach could be applied on any kind of BCI paradigm and in most of the cases to significantly improve the classifier reliability. We point out some key features to further improve transfer learning methods.
翻译:对大脑-计算机界面(BCI)用户来说,校准仍然是一个重要问题。共同的实验设计往往需要很长的培训时间,在开始使用BCI之前就会引起认知疲劳。通过依靠先进的机器学习技术,例如转让学习,可以减少或抑制这种取决于主题的校准。在Riemannian BCI的基础上,我们提出了一个简单而有效的计划,对不同科目记录的数据进行分类培训,以减少校准,同时保持良好的性能。本文件的主要新颖之处是提出一种独特的方法,可以适用于非常不同的范式。为了证明这种方法的稳健性,我们对三个BCI模式的多数据集进行了元分析:与事件有关的潜力(P300)、运动图象和SSVEP。我们借助MOABB开放源框架,以确保实验和统计分析的可再现性,结果清楚地表明,拟议的方法可以适用于任何类型的BCI范式,而且在大多数情况下可以大大改进分类的可靠性。我们指出一些关键特征,以便进一步改进转让方法。