Data shift robustness is an active research topic, however, it has been primarily investigated from a fully supervised perspective, and robustness of zero-shot learning (ZSL) models have been largely neglected. In this paper, we present a novel analysis on the robustness of discriminative ZSL to image corruptions. We leverage the well-known label embedding model and subject it to a large set of common corruptions and defenses. In order to realize the corruption analysis, we curate and release the first ZSL corruption robustness datasets SUN-C, CUB-C and AWA2-C. We analyse our results by taking into account the dataset characteristics, class imbalance, class transition trends between seen and unseen classes and the discrepancies between ZSL and GZSL performances. Our results show that discriminative ZSL suffer from corruptions and this trend is further exacerbated by the severe class imbalance and model weakness inherent in ZSL methods. We then combine our findings with those based on adversarial attacks in ZSL, and highlight the different effects of corruptions and adversarial examples, such as the pseudo-robustness effect present under adversarial attacks. We also obtain new strong baselines for the label embedding model with certain corruption robustness enhancement methods. Finally, our experiments show that although existing methods to improve robustness somewhat work for ZSL models, they do not produce a tangible effect.


翻译:数据转换的稳健性是一个积极的研究课题,然而,它主要是从充分监督的角度来调查的,零点学习模式的稳健性在很大程度上被忽略。在本文件中,我们对歧视性ZSL的稳健性进行了新颖的分析,分析有区别的ZSL和GZSL业绩之间的差异。我们利用众所周知的标签嵌入模式,将其置于大量共同的腐败和防御之下。为了实现腐败分析,我们整理并发布首个ZSL的腐败稳健性数据集,我们首先从充分监督的角度,然后公布首个ZSL的腐败稳健性数据集,CUB-C和AW2-C。我们分析我们的结果时要考虑到数据集的特点、阶级不平衡、可见和不可见的阶级之间的阶级过渡趋势以及ZSL和GZSL的表现之间的差异。我们的结果表明,歧视性ZSL受到腐败的困扰,而这种趋势又由于ZSL方法固有的严重阶级不平衡和模式弱点而进一步加剧。我们随后将我们的调查结果与基于ZSL、C和AWAW2-C的对立式攻击的结果结合起来,并强调腐败和对抗性实例的不同影响,例如假的模型的坏性模型的坏性效果,而不是强健健健的基质性效应,我们最后将改进的基底的实验。我们获得了某种腐化的基底的实验性标签。

0
下载
关闭预览

相关内容

专知会员服务
45+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
206+阅读 · 2019年9月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
17+阅读 · 2021年2月15日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
206+阅读 · 2019年9月30日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Zero-Shot Learning相关资源大列表
专知
52+阅读 · 2019年1月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员