Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model. Our codes and models are available at https://github.com/MyChocer/KGTN .
翻译:少见的学习目的是从为数不多的样本中学习新颖的类别,这些样本中有一些基础类别,并有足够的培训样本。这一任务的主要挑战在于新颖类别容易被颜色、质地、对象或背景背景背景的形状(即具体性)所支配,这些种类对给定的少数培训样本来说是不同的,但对相应类别来说并不常见(见图1)。幸运的是,我们发现,根据相关类别传输信息有助于学习新概念,从而避免因地制宜的新概念。此外,纳入不同类别之间的语义相关性可以有效地规范这种信息传输。在这项工作中,我们以结构化知识图表的形式代表语义相关性,并将这一图表纳入深层神经网络,以促进由新的知识图表转换网络(KGTTN)进行少量的学习。具体地说,通过初始化每个节点与相应类别分类的分类权重,我们学会了一种传播机制,通过图表以适应方式传播节点信息,以探索Nde互动和将基础类别的分类信息传输到新类别。在图像网络中进行的广泛实验显示与当前主要竞争者相比的显著性改进了业绩。此外,我们构建了一个图像网络的分类,我们在数据库和6000数据模型。我们还展示了我们的数据模型。