Skeleton-based human action recognition has attracted much attention with the prevalence of accessible depth sensors. Recently, graph convolutional networks (GCNs) have been widely used for this task due to their powerful capability to model graph data. The topology of the adjacency graph is a key factor for modeling the correlations of the input skeletons. Thus, previous methods mainly focus on the design/learning of the graph topology. But once the topology is learned, only a single-scale feature and one transformation exist in each layer of the networks. Many insights, such as multi-scale information and multiple sets of transformations, that have been proven to be very effective in convolutional neural networks (CNNs), have not been investigated in GCNs. The reason is that, due to the gap between graph-structured skeleton data and conventional image/video data, it is very challenging to embed these insights into GCNs. To overcome this gap, we reinvent the split-transform-merge strategy in GCNs for skeleton sequence processing. Specifically, we design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition. Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths. Extensive experiments demonstrate that our network outperforms state-of-the-art methods by a significant margin with only 1/5 of the parameters and 1/10 of the FLOPs.


翻译:以皮肤为主的人类行动认识已引起人们的极大关注,因为广泛存在无障碍深度感应器。最近,由于图像变异网络(GCNs)具有建模图形数据的强大能力,因此在这项任务中广泛使用了图形变异网络(GCNs)。相邻图形的地形学是建模输入骨骼相关性的一个关键因素。因此,以前的方法主要侧重于图形表层结构的设计/学习。但是,一旦学会了这个表层学,网络的每个层次中就只有一个单一规模的特征和一个转变。许多见解,例如多规模的信息和多组变异网络(GCNs),这些在革命神经网络(CNNs)中被证明非常有效。GCNs没有在GCNs中调查相邻的图形变异网络的地形学是建模要素。由于图形结构骨架数据与传统图像/视频数据之间的差距,因此将这些洞察结果嵌入GCNs。为了克服这一差距,我们只能重新改造GCNs的分裂变换战略用于骨架序列处理。具体地,我们设计了一个简单和高度模块化的变异网络结构化的网络结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构,从1级模型化的模型化的模型化模型化模型模型模型模型化模型化模型化模型化模型化模型化模型化模型化模型化模型化了我们所建的模型化的模型化系统化系统化系统化的模型化的模型化的模型化的模型化系统,通过一个模型化的模型化的模型化模型化模型式模型式模型化系统化系统化系统化系统化系统化的模型化系统化系统化系统化系统化系统化的模型化的模型化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化的模型化的模型化的模型化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化系统化的系统化系统化。

0
下载
关闭预览

相关内容

Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
67+阅读 · 2020年2月29日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
ICCV 2019 行为识别/视频理解论文汇总
极市平台
15+阅读 · 2019年9月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
67+阅读 · 2020年2月29日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Top
微信扫码咨询专知VIP会员