Grasping with anthropomorphic robotic hands involves much more hand-object interactions compared to parallel-jaw grippers. Modeling hand-object interactions is essential to the study of multi-finger hand dextrous manipulation. This work presents DVGG, an efficient grasp generation network that takes single-view observation as input and predicts high-quality grasp configurations for unknown objects. In general, our generative model consists of three components: 1) Point cloud completion for the target object based on the partial observation; 2) Diverse sets of grasps generation given the complete point cloud; 3) Iterative grasp pose refinement for physically plausible grasp optimization. To train our model, we build a large-scale grasping dataset that contains about 300 common object models with 1.5M annotated grasps in simulation. Experiments in simulation show that our model can predict robust grasp poses with a wide variety and high success rate. Real robot platform experiments demonstrate that the model trained on our dataset performs well in the real world. Remarkably, our method achieves a grasp success rate of 70.7\% for novel objects in the real robot platform, which is a significant improvement over the baseline methods.
翻译:使用人类造型机器人手进行筛选,与平行的爪爪抓手相比,需要更多手工物体的相互作用。模拟手工物体的相互作用对于研究多指手巧妙的操纵至关重要。 这项工作展示了DVGG, 这是一个高效的手动生成网络, 将一次性观察作为输入, 并预测出对未知天体的高质量捕捉配置。 一般来说, 我们的基因化模型由三个组成部分组成:1) 基于部分观察, 目标对象的点云完成点; 2) 根据完整的点云层, 不同组的抓得量生成; 3) 循环抓得更精细, 以便实现物理上合理的抓得力优化。 为了培训我们的模型, 我们建造了一个包含大约300个通用对象模型的大型抓取数据集, 其中包括1.5M的模拟附加装置。 模拟实验实验显示, 我们的模型能够以广泛和高成功率预测稳健的抓得力。 真正的机器人平台实验表明, 我们的数据集所训练模型在现实世界中表现良好。 值得注意的是, 我们的方法在真正的机器人平台上获得70.7 ⁇ 的成功率, 这大大改进了基线方法。