Image inpainting is a technique of completing missing pixels such as occluded region restoration, distracting objects removal, and facial completion. Among these inpainting tasks, facial completion algorithm performs face inpainting according to the user direction. Existing approaches require delicate and well controlled input by the user, thus it is difficult for an average user to provide the guidance sufficiently accurate for the algorithm to generate desired results. To overcome this limitation, we propose an alternative user-guided inpainting architecture that manipulates facial attributes using a single reference image as the guide. Our end-to-end model consists of attribute extractors for accurate reference image attribute transfer and an inpainting model to map the attributes realistically and accurately to generated images. We customize MS-SSIM loss and learnable bidirectional attention maps in which importance structures remain intact even with irregular shaped masks. Based on our evaluation using the publicly available dataset CelebA-HQ, we demonstrate that the proposed method delivers superior performance compared to some state-of-the-art methods specialized in inpainting tasks.
翻译:图像映射是一种完成缺失像素的技术, 如隐蔽区域恢复、 转移物体移位和面部完成等。 在这些绘制任务中, 面部完成算法根据用户方向进行面部涂色。 现有方法需要用户的微妙和有良好控制的输入, 因此普通用户很难提供足够准确的指导, 使算法产生预期结果。 为了克服这一限制, 我们建议了另一种由用户指导的画像结构, 用单一的参考图像作为指南来控制面部属性。 我们的端到端模型包括精确参考图像属性属性转换的属性提取器, 以及一个真实和准确地绘制生成图像的属性映射模型。 我们定制了MS- SSIM 损失和可学习的双向关注地图, 这些重要结构即使使用不正常的外形遮罩也保持完好。 根据我们使用公开的数据集CelebA-HQ进行的评估, 我们证明, 与一些专门用于油漆任务的状态技术方法相比, 拟议的方法的性能提供更好的表现 。