Many industrial and real life problems exhibit highly nonlinear periodic behaviors and the conventional methods may fall short of finding their analytical or closed form solutions. Such problems demand some cutting edge computational tools with increased functionality and reduced cost. Recently, deep neural networks have gained massive research interest due to their ability to handle large data and universality to learn complex functions. In this work, we put forward a methodology based on deep neural networks with responsive layers structure to deal nonlinear oscillations in microelectromechanical systems. We incorporated some oscillatory and non oscillatory activation functions such as growing cosine unit known as GCU, Sine, Mish and Tanh in our designed network to have a comprehensive analysis on their performance for highly nonlinear and vibrational problems. Integrating oscillatory activation functions with deep neural networks definitely outperform in predicting the periodic patterns of underlying systems. To support oscillatory actuation for nonlinear systems, we have proposed a novel oscillatory activation function called Amplifying Sine Unit denoted as ASU which is more efficient than GCU for complex vibratory systems such as microelectromechanical systems. Experimental results show that the designed network with our proposed activation function ASU is more reliable and robust to handle the challenges posed by nonlinearity and oscillations. To validate the proposed methodology, outputs of our networks are being compared with the results from Livermore solver for ordinary differential equation called LSODA. Further, graphical illustrations of incurred errors are also being presented in the work.


翻译:许多工业和实际问题表现出高度非线性周期性行为,并且传统方法可能无法找到它们的解析或封闭形式解。这种问题需要一些先进的计算工具,具有增加的功能和降低的成本。最近,深度神经网络由于其处理大量数据和学习复杂函数的通用性而引起了大量研究关注。在这项工作中,我们提出了一种基于深度神经网络的方法,采用响应式层结构处理微纳机械系统中的非线性振荡。我们在设计的网络中加入了一些振荡和非振荡的激活函数,例如增长余弦单元(GCU)、正弦、Mish和Tanh,以便对其在高度非线性和振动问题中的性能进行全面分析。将振荡激活函数与深度神经网络相结合,绝对可以在处理底层系统的周期模式方面胜任。为了支持非线性系统的振荡激励,我们提出了一种新的振荡激励函数称为放大正弦单元(ASU),其在处理微纳机械系统等复杂振动系统方面比GCU更有效。实验结果表明,采用我们提出的激励函数ASU设计的网络更可靠、更能够处理非线性和振荡带来的挑战。为了验证所提出的方法,我们将网络输出的结果与普通微分方程Livermore求解器(LSODA)的结果进行了比较。此外,文中还提供了造成的错误的图形说明。

0
下载
关闭预览

相关内容

强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员