项目名称: 带有随机参数输入的非线性双曲型方程的数值方法
项目编号: No.11201461
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 周涛
作者单位: 中国科学院数学与系统科学研究院
项目金额: 22万元
中文摘要: 研究数值计算方法的最终目标是对于实际的物理过程或复杂系统进行准确预测。过去的很长一段时间里,研究工作者对于高效的数值计算方法进行了深入研究,这使得由数值算法产生的误差得到了很好的控制。然而,我们所求解的数学模型中存在许多的不确定(随机)因素,比如数学模型中的参数,不确定的初值或边界条件,求解区域的复杂性等等。近年来,对于带有随机参数输入的数学模型的数值算法研究受到了高度重视。其中一个重要原因是对这些不确定因素的定量化研究有助于对实际问题进行更加准确的预测。本课题将主要研究带有随机参数输入的非线性双曲型方程的数值算法及其理论分析。带有随机参数输入的非线性双曲型方程在流体动力学、化学反应过程、石油油藏模拟等领域有重要应用。随机因素的影响以及非线性双曲型问题固有的解间断性质使得精确的数值模拟具有很大的挑战性。因此,这一研究课题无论从计算理论还是从算法设计上都具有重要意义。
中文关键词: 不确定性量化;动态正交逼近方法;随机配置方法;;
英文摘要: The ultimate objective of numerical simulations is to predict physical events or the behaviors of engineering systems. In the past few decades, extensive efforts have been devoted to the development of accurate numerical algorithms, which make the simulation predictions reliable in the sense that numerical errors are well under control and understood. However, the mathematical models under considered are affected by many uncertain (stochastic) factors. The uncertainty may happen for parameter values, initial and boundary conditions and geometric domains and so on. In recent years, there have been growing interests in designing efficient numerical methods for mathematical models with stochastic parameters. The study of uncertainty quantification is to provide more reliable predictions for real-life problems. In this project, we will investigate uncertainty quantification for problems governed by hyperbolic partial differential equations, in particular for stochastic nonlinear hyperbolic equations that have many important applications in fluid mechanics,chemical reaction flows and porous media flows. The random effect and the fact that nonlinear hyperbolic equations admit discontinuous solutions yield great challenges for designing numerical algorithms and for the relevant numerical analysis. Thus, the numerical
英文关键词: Uncertainty Quantification;Dynamically orthogonal approach;Stochastic Collocation methods;;