Reinforcement learning with sparse rewards is challenging because an agent can rarely obtain non-zero rewards and hence, gradient-based optimization of parameterized policies can be incremental and slow. Recent work demonstrated that using a memory buffer of previous successful trajectories can result in more effective policies. However, existing methods may overly exploit past successful experiences, which can encourage the agent to adopt sub-optimal and myopic behaviors. In this work, instead of focusing on good experiences with limited diversity, we propose to learn a trajectory-conditioned policy to follow and expand diverse past trajectories from a memory buffer. Our method allows the agent to reach diverse regions in the state space and improve upon the past trajectories to reach new states. We empirically show that our approach significantly outperforms count-based exploration methods (parametric approach) and self-imitation learning (parametric approach with non-parametric memory) on various complex tasks with local optima. In particular, without using expert demonstrations or resetting to arbitrary states, we achieve the state-of-the-art scores under five billion number of frames, on challenging Atari games such as Montezuma's Revenge and Pitfall.


翻译:利用以往成功轨迹的记忆缓冲可以导致更有效的政策;然而,现有方法可能会过度利用以往的成功经验,从而鼓励代理人采用亚最佳和近似行为;在这项工作中,我们提议学习一种以轨迹为条件的政策,以便从记忆缓冲中遵循和扩大不同的过去轨迹。我们的方法允许代理人进入州空间的不同区域,并改进过去的轨迹,以达到新的状态。我们从经验上表明,我们的方法大大超越了基于计数的探索方法(准度方法)和与当地选择项目的各种复杂任务(非准度记忆的对称方法)的自我模仿学习。特别是,我们不使用专家演示或对任意状态的重新校正,我们取得了低于50亿个框架的状态,即挑战性游戏(如蒙特苏马)和赌博(如Montezfallegall ) 。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员