We investigate the generalization and optimization of $k$-homogeneous shallow neural-network classifiers in the interpolating regime. The study focuses on analyzing the performance of the model when it is capable of perfectly classifying the input data with a positive margin $\gamma$. When using gradient descent with logistic-loss minimization, we show that the training loss converges to zero at a rate of $\tilde O(1/\gamma^{2/k} T)$ given a polylogarithmic number of neurons. This suggests that gradient descent can find a perfect classifier for $n$ input data within $\tilde{\Omega}(n)$ iterations. Additionally, through a stability analysis we show that with $m=\Omega(\log^{4/k} (n))$ neurons and $T=\Omega(n)$ iterations, the test loss is bounded by $\tilde{O}(1/\gamma^{2/k} n)$. This is in contrast to existing stability results which require polynomial width and yield suboptimal generalization rates. Central to our analysis is the use of a new self-bounded weak convexity property, which leads to a generalized local quasi-convexity property for sufficiently parameterized neural-network classifiers. Eventually, despite the objective's non-convexity, this leads to convergence and generalization-gap bounds that are similar to those in the convex setting of linear logistic regression.


翻译:我们调查了内插制度中以美元为均匀的浅神经网络分类器的通用和优化。 研究的重点是分析模型在能够以正差对输入数据进行完美分类时的性能。 在使用梯度下降以后勤损失最小化时, 我们显示, 在多数神经元的多数中, 培训损失以美元( 1/\ gama ⁇ 2/k} T) 的速率为零。 这表明, 梯度下降可以在 $\ tilde\ Omega} (n) 重迭中为美元输入数据找到完美的分类器。 此外, 通过稳定分析, 我们显示, 在使用 $\\ omega (\ log_ 4/ k} (n) 时, 以 美元和 $ $T ⁇ Omega (n) 为单位, 测试损失由 $\ tilde{conde{O} (1/\ gammama_ 2/ k} n。 这与现有的稳定性结果不同, 需要多线度宽度和生成 直线性( iralx) Qalizalizalizalizalizalizalizalizalizal) 分析结果, 中, 至Centralizalizalizalizaliz 。 至Central- 至 Crex 等 至 至 等新的自我分析。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员