Recently, predictor-based algorithms emerged as a promising approach for neural architecture search (NAS). For NAS, we typically have to calculate the validation accuracy of a large number of Deep Neural Networks (DNNs), what is computationally complex. Predictor-based NAS algorithms address this problem. They train a proxy model that can infer the validation accuracy of DNNs directly from their network structure. During optimization, the proxy can be used to narrow down the number of architectures for which the true validation accuracy must be computed, what makes predictor-based algorithms sample efficient. Usually, we compute the proxy for all DNNs in the network search space and pick those that maximize the proxy as candidates for optimization. However, that is intractable in practice, because the search spaces are often very large and contain billions of network architectures. The contributions of this paper are threefold: 1) We define a sample efficiency gain to compare different predictor-based NAS algorithms. 2) We conduct experiments on the NASBench-101 dataset and show that the sample efficiency of predictor-based algorithms decreases dramatically if the proxy is only computed for a subset of the search space. 3) We show that if we choose the subset of the search space on which the proxy is evaluated in a smart way, the sample efficiency of the original predictor-based algorithm that has access to the full search space can be regained. This is an important step to make predictor-based NAS algorithms useful, in practice.


翻译:最近,基于预测的算法成为神经结构搜索的一种有希望的方法。对于NAS来说,我们通常必须计算大量深神经网络(DNNS)的验证准确性,这是计算复杂的。基于预测的NAS算法解决这一问题。它们训练一个代理模型,可以直接从网络结构推断出DNNS的验证准确性。在优化过程中,可以使用代理来缩小必须计算真实验证准确性的建筑数量,从而提高基于预测的算法的样本效率。对于NAS来说,我们通常必须计算网络搜索空间中所有DNNS(DNNS)的代理数据,并挑选那些作为优化候选人的代理数据。然而,这在实际中是难以解决的,因为搜索空间空间空间空间系统通常非常庞大,包含数十亿的网络结构。本文的三方面贡献是:(1) 我们定义一个抽样效率增益,以比较基于不同预测的NASBEC-101的算法。(2) 我们在基于NASBSB-101的数据集中进行有用的实验,并显示基于预测的算法的样本效率会急剧下降,如果这个代算法只能进行原始的搜索,我们在空间搜索时可以选择一个空间的原始空间访问的精选方法。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
211+阅读 · 2020年1月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2020年10月8日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
211+阅读 · 2020年1月13日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员