Nonparametric transformation models (NTMs) have sparked much interest in survival prediction owing to their flexibility with both transformations and error distributions unspecified. However, fitting these models has been hampered because they are unidentified. Existing approaches typically constrain the parameter space to ensure identifiablity, but they incur intractable computation and cannot scale up to complex data; other approaches address the identifiablity issue by making strong \textit{a priori} assumptions on either of the nonparametric components, and thus are subject to misspecifications. Utilizing a Bayesian workflow, we address the challenge by constructing new weakly informative nonparametric priors for infinite-dimensional parameters so as to remedy flat likelihoods associated with unidentified models. To facilitate applicability of these new priors, we subtly impose an exponential transformation on top of NTMs, which compresses the space of infinite-dimensional parameters to positive quadrants while maintaining interpretability. We further develop a cutting-edge posterior modification technique for estimating the fully identified parametric component. Simulations reveal that our method is robust and outperforms the competing methods, and an application to a Veterans lung cancer dataset suggests that our method can predict survival time well and help develop clinically meaningful risk scores, based on patients' demographic and clinical predictors.
翻译:非参数变异模型(NTMS)因其在变异和误差分布方面的灵活性而引起了人们对生存预测的极大兴趣。然而,这些模型的安装由于身份不明而受阻。现有方法通常限制参数空间以确保身份识别,但计算困难,无法扩大至复杂数据;其他方法解决身份识别问题,办法是对非参数组成部分中的任一组成部分作出强有力的 & textit{ a suspirit} 假设,从而受到错误的区分。利用巴耶斯工作流程,我们应对挑战的方法是,为无限维参数建造新的、信息不足的非参数前科,以补救与不明模型相关的平坦可能性。为了便利这些新前科的适用性,我们在NTMs上设置了指数性变异性变换,将无限维度参数的空间压缩到正的四分立方体,同时保持可解释性。我们进一步开发了一种尖端的后方位变异技术,用于估计完全确定的参数。模拟显示我们的方法是稳健的,超越了相竞合的方法,超越了与不明的无限的参数,从而纠正了与不明的模型相关的概率的可能性。为了预测结果而采用一种可靠的临床病变化的临床癌症的方法。