A new kind of spline geometric method approach is presented. Its main ingredient is the use of well established spline spaces forming a discrete de Rham complex to construct a primal sequence $\{X^k_h\}^n_{k=0}$, starting from splines of degree $p$, and a dual sequence $\{\tilde{X}^k_h\}_{k=0}^n$, starting from splines of degree $p-1$. By imposing homogeneous boundary conditions to the spaces of the primal sequence, the two sequences can be isomorphically mapped into one another. Within this setup, many familiar second order partial differential equations can be finally accommodated by explicitly constructing appropriate discrete versions of constitutive relations, called Hodge--star operators. Several alternatives based on both global and local projection operators between spline spaces will be proposed. The appeal of the approach with respect to similar published methods is twofold: firstly, it exhibits high order convergence. Secondly, it does not rely on the geometric realization of any (topologically) dual mesh. Several numerical examples in various space dimensions will be employed to validate the central ideas of the proposed approach and compare its features with the standard Galerkin approach in Isogeometric Analysis.


翻译:介绍了一种新型的样板几何方法。 它的主要成分是使用成熟的样板空间,形成一个离散的雷姆综合体,以构建一个原始序列${X ⁇ k_h ⁇ n ⁇ k=0美元,从度值的柱形开始,和双序列$ ⁇ tilde{X ⁇ k_h ⁇ k=0美元,从度值的柱状开始,从度值的柱状开始。通过将同质边界条件强加给原始序列的空间,两个序列可以相互对映。在这个设置中,许多熟悉的第二顺序部分差异方程式可以通过明确构建适当的组织关系离散版本(称为Hodge-star操作员)来最终适应。将提出一些基于全球和局部预测操作员在样状空间之间的两种替代方案。对于类似公布方法的吸引力是双重的: 首先,它显示了高度的顺序趋同。 其次,它不依靠任何(地形)双重的几何测方法。 在这个设置中,许多熟悉的第二顺序部分差异方形方形方形方形方程式最终可以通过明确构建适当的结构, 来明确构建适当的结构结构关系中的分立方形方形,称为Hodge- gard- sal 分析方法中的一些数示例分析方法将用来验证。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
0+阅读 · 2022年9月7日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员