A new kind of spline geometric method approach is presented. Its main ingredient is the use of well established spline spaces forming a discrete de Rham complex to construct a primal sequence $\{X^k_h\}^n_{k=0}$, starting from splines of degree $p$, and a dual sequence $\{\tilde{X}^k_h\}_{k=0}^n$, starting from splines of degree $p-1$. By imposing homogeneous boundary conditions to the spaces of the primal sequence, the two sequences can be isomorphically mapped into one another. Within this setup, many familiar second order partial differential equations can be finally accommodated by explicitly constructing appropriate discrete versions of constitutive relations, called Hodge--star operators. Several alternatives based on both global and local projection operators between spline spaces will be proposed. The appeal of the approach with respect to similar published methods is twofold: firstly, it exhibits high order convergence. Secondly, it does not rely on the geometric realization of any (topologically) dual mesh. Several numerical examples in various space dimensions will be employed to validate the central ideas of the proposed approach and compare its features with the standard Galerkin approach in Isogeometric Analysis.
翻译:介绍了一种新型的样板几何方法。 它的主要成分是使用成熟的样板空间,形成一个离散的雷姆综合体,以构建一个原始序列${X ⁇ k_h ⁇ n ⁇ k=0美元,从度值的柱形开始,和双序列$ ⁇ tilde{X ⁇ k_h ⁇ k=0美元,从度值的柱状开始,从度值的柱状开始。通过将同质边界条件强加给原始序列的空间,两个序列可以相互对映。在这个设置中,许多熟悉的第二顺序部分差异方程式可以通过明确构建适当的组织关系离散版本(称为Hodge-star操作员)来最终适应。将提出一些基于全球和局部预测操作员在样状空间之间的两种替代方案。对于类似公布方法的吸引力是双重的: 首先,它显示了高度的顺序趋同。 其次,它不依靠任何(地形)双重的几何测方法。 在这个设置中,许多熟悉的第二顺序部分差异方形方形方形方形方程式最终可以通过明确构建适当的结构, 来明确构建适当的结构结构关系中的分立方形方形,称为Hodge- gard- sal 分析方法中的一些数示例分析方法将用来验证。