项目名称: 镓砷基纳米线边栅效应及其钝化研究

项目编号: No.11274346

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 贾锐

作者单位: 中国科学院微电子研究所

项目金额: 95万元

中文摘要: Si基微电子器件及电路是当代信息社会的基础,其器件尺寸正持续不断地缩小,但正越来越面临着技术发展的瓶颈。人们普遍希望, 基于某些新原理新集成逻辑工作的新型器件,及其集成电路将会逐渐地"取代"传统器件。GaAs/AlGaAs二维自由电子气具有高迁移率特性,研制GaAs/AlGaAs纳米线晶体管二元决定图逻辑集成电路正是人们的尝试之一,是活跃的研究方向。在研制该电路中,边栅效应阻碍了单个节点器件尺寸的进一步缩小和电路集成度的进一步提高,因此本项目将深入研究由于表面态和表面缺陷而导致的边栅效应,阐明其机理,并寻找合适的表面钝化方式来减缓或者消除由于表面态和缺陷导致的边栅效应,开发相应的准平面工艺,为器件尺寸的进一步缩小和集成度提高奠定基础。

中文关键词: 纳米线晶体管;边栅效应;二元决定图电路;表面钝化;GaAs/AlGaAs HEMT

英文摘要: Si-based microelectronics is the fundation of current information society.Side-gating behaviors of GaAs-based quantum wire transistors (QWRTrs) formed on AlGaAs/GaAs etched nanowire controlled by nanosized Schottky gates will be investigated. Test QWRTr devices, having a different mesa etching depth, te, and nanowire to side-gate distance, dsg, will be fabricated and characterized. A theoretical analysis based on the two dimensional potential simulation will be used to simulate the side-gating effect with different dsg and etching depth. Various measurment will be performed to characterize the side-gating effects in order to find the basic behaviors. The approapriate surface passivation will be performed to eliminate the side-gating effect, so that the node-device of binary decesion diagram circuit can become smaller with higher integration density.

英文关键词: nanowire transistor;side-gating effect;binary decision diagram;surface passivation;GaAs/AlGaAs HEMT

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
36+阅读 · 2021年7月8日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
36+阅读 · 2021年7月8日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
24+阅读 · 2021年4月21日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
量子信息技术研究现状与未来
专知会员服务
39+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员