In this paper, we are interested in linear prediction of a particular kind of stochastic process, namely a marked temporal point process. The observations are event times recorded on the real line, with marks attached to each event. We show that in this case, linear prediction extends straightforwardly from the theory of prediction for stationary stochastic processes. Following classical lines, we derive a Wiener-Hopf-type integral equation to characterise the linear predictor, extending the "model independent origin" of the Hawkes process (Jaisson, 2015) as a corollary. We propose two recursive methods to solve the linear prediction problem and show that these are computationally efficient in known cases. The first solves the Wiener-Hopf equation via a set of differential equations. It is particularly well-adapted to autoregressive processes. In the second method, we develop an innovations algorithm tailored for moving-average processes. A small simulation study on two typical examples shows the application of numerical schemes for estimation of a Hawkes process intensity.
翻译:在本文中,我们有兴趣对某种特定类型的随机过程进行线性预测,即一个标志性的时点过程。观测是记录在真实线上的事件时间,每个事件都有标记。 我们显示,在此情况下,线性预测直接从固定随机过程的预测理论中延伸。 在古典线条之后,我们得出一个Wiener-Hopf类型的整体方程式来描述线性预测器,将霍克斯过程的“独立来源模型”(Jaisson, 2015年)作为必然结果。我们建议了两种循环方法来解决线性预测问题,并表明在已知案例中这些是计算有效的。 第一次通过一套差异方程式解决了维纳- Hop方程式。 它特别适合于自动回归过程。 在第二种方法中,我们为移动平均过程开发了一种创新算法。 在两个典型的例子中,一个小的模拟研究表明了用于估计霍克斯过程强度的数字方法的应用。