We present a novel and mathematically transparent approach to function approximation and the training of large, high-dimensional neural networks, based on the approximate least-squares solution of associated Fredholm integral equations of the first kind by Ritz-Galerkin discretization, Tikhonov regularization and tensor-train methods. Practical application to supervised learning problems of regression and classification type confirm that the resulting algorithms are competitive with state-of-the-art neural network-based methods.


翻译:我们提出了一种新颖且数学上透明的方法,基于通过瑞兹-伽辽金离散化,蒂克诺夫正则化和张量列方法近似地最小二乘求解相关Fredholm积分方程,以完成函数逼近和大型高维神经网络的训练。在回归和分类等有监督学习问题的实际应用中,我们证实了所得算法与现代神经网络方法相当竞争力。

1
下载
关闭预览

相关内容

通常,函数逼近问题要求我们从定义明确的类中选择一个函数,该类以特定于任务的方式与目标函数紧密匹配(“近似”)。 在应用数学的许多分支中,特别是在计算机科学中,都出现了函数逼近的需求。 一个人可以区分两类主要的函数逼近问题:首先,对于已知的目标函数,逼近理论是数值分析的分支,它研究如何通过特定的函数类(例如,某些函数)来近似某些已知函数(例如,特殊函数)。 ,多项式或有理函数),这些属性通常具有理想的属性(廉价的计算,连续性,积分和极限值等)。 其次,目标函数g可能是未知的; 而不是显式公式,仅提供(x,g(x))形式的一组点。 取决于g的域和共域的结构,可以采用几种近似g的技术。 例如,如果g是对实数的运算,则可以使用插值,外推,回归分析和曲线拟合的技术。 如果g的共域(范围集或目标集)是一个有限集,那么人们正在处理一个分类问题。 在某种程度上,不同的问题(回归,分类,适应度近似)在统计学习理论中得到了统一的处理,在这些理论中,它们被视为监督学习问题。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
83+阅读 · 2022年3月19日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
105+阅读 · 2019年12月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员