Text classification aims to assign labels to textual units by making use of global information. Recent studies have applied graph neural network (GNN) to capture the global word co-occurrence in a corpus. Existing approaches require that all the nodes (training and test) in a graph are present during training, which are transductive and do not naturally generalise to unseen nodes. To make those models inductive, they use extra resources, like pretrained word embedding. However, high-quality resource is not always available and hard to train. Under the extreme settings with no extra resource and limited amount of training set, can we still learn an inductive graph-based text classification model? In this paper, we introduce a novel inductive graph-based text classification framework, InducT-GCN (InducTive Graph Convolutional Networks for Text classification). Compared to transductive models that require test documents in training, we construct a graph based on the statistics of training documents only and represent document vectors with a weighted sum of word vectors. We then conduct one-directional GCN propagation during testing. Across five text classification benchmarks, our InducT-GCN outperformed state-of-the-art methods that are either transductive in nature or pre-trained additional resources. We also conducted scalability testing by gradually increasing the data size and revealed that our InducT-GCN can reduce the time and space complexity. The code is available on: https://github.com/usydnlp/InductTGCN.
翻译:文本分类的目的是通过使用全球信息为文本单位分配标签。 最近的研究已经应用了图形神经网络( GNNN) 来在一个数据库中捕捉全球单词共发的文本分类模型。 现有的方法要求图表中的所有节点( 训练和测试) 都存在于培训过程中, 培训过程是传输性的, 不自然地向看不见节点概括。 要使这些模型具有感化作用, 它们使用额外的资源, 如预先训练的字嵌入。 但是, 质量资源并不总是可用, 并且很难培训。 在没有额外资源和有限培训设置的极端环境中, 我们仍可以学习一个基于直线的图形文本分类模型模型? 在本文中, 我们引入一个新的基于直线性图形的文本分类框架, “ 教育G-GCN( 用于文字分类的导进化图图图图图图图集网络) ” 与需要测试文件的感化模型相比, 我们只能根据培训文件的统计来构建一个图表, 并且代表文件矢量的加权组合。 我们随后在测试过程中进行一CN CN CN 向 GCN 。 在测试过程中, 我们的感化了五度 数据分类中, 也逐渐地测试了我们的数据 。 。 。 正在逐步地进行额外的 。 测试 。 。 。 。