Inherent in virtually every iterative machine learning algorithm is the problem of hyper-parameter tuning, which includes three major design parameters: (a) the complexity of the model, e.g., the number of neurons in a neural network, (b) the initial conditions, which heavily affect the behavior of the algorithm, and (c) the dissimilarity measure used to quantify its performance. We introduce an online prototype-based learning algorithm that can be viewed as a progressively growing competitive-learning neural network architecture for classification and clustering. The learning rule of the proposed approach is formulated as an online gradient-free stochastic approximation algorithm that solves a sequence of appropriately defined optimization problems, simulating an annealing process. The annealing nature of the algorithm contributes to avoiding poor local minima, offers robustness with respect to the initial conditions, and provides a means to progressively increase the complexity of the learning model, through an intuitive bifurcation phenomenon. The proposed approach is interpretable, requires minimal hyper-parameter tuning, and allows online control over the performance-complexity trade-off. Finally, we show that Bregman divergences appear naturally as a family of dissimilarity measures that play a central role in both the performance and the computational complexity of the learning algorithm. Experimental results illustrate the properties and evaluate the performance of the proposed learning algorithm.


翻译:在几乎所有迭代机学习算法中,几乎每个迭代机学习算法的内在都是超参数调制问题,其中包括三个主要设计参数:(a) 模型的复杂性,例如神经网络中的神经神经元数量;(b) 最初条件,这些条件严重影响了算法的行为;(c) 用于量化其性能的不相容性尺度。我们引入了在线原型学习算法,可以被视为一种不断增长的竞争性学习神经网络分类和集群结构。拟议方法的学习规则是设计成一种在线的无梯度梯度随机近似算法,它解决了一套定义得当的优化问题,模拟了肛门过程。算法的隐性性质有助于避免当地微弱的微弱行为,提供了对初始条件的稳健性,并提供了一种手段,通过直观的两极性两极分化现象,逐步增加学习模型的复杂性。拟议方法可以解释,需要最低限度的超度调制,并允许对性能兼容性交易进行在线控制。最后,我们展示的是,算法法的反变法性模型的成绩,在核心演算中,我们自然地学习了一种变式计算结果。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【Manning新书】现代Java实战,592页pdf
专知会员服务
98+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
4+阅读 · 2021年2月8日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员