In this contribution we propose a data-driven surrogate model for the prediction of magnetic stray fields in two-dimensional random micro-heterogeneous materials. Since data driven models require thousands of training data sets, FEM simulations appear to be too time consuming. Hence, a stochastic model based on Brownian motion, which utilizes an efficient evaluation of stochastic transition matrices, is applied for the training data generation. For the encoding of the microstructure and the optimization of the surrogate model, two architectures are compared, i.e. the so-called UResNet model and the Fourier Convolutional neural network (FCNN). Here we analyze two FCNNs, one based on the discrete cosine transformation and one based on the complex-valued discrete Fourier transformation. Finally, we compare the magnetic stray fields for independent microstructures (not used in the training set) with results from the FE$^2$ method, a numerical homogenization scheme, to demonstrate the efficiency of the proposed surrogate model.


翻译:在本文中,我们提出了一个数据驱动的代理模型,用于预测二维随机微异质材料中的磁荷场。由于数据驱动模型需要数千个训练数据集,FEM模拟似乎太耗时。因此,我们采用基于布朗运动的随机模型,利用有效的随机转移矩阵评估进行训练数据生成。对于微结构的编码和代理模型的优化,我们比较了两种体系结构,即所谓的UResNet模型和傅里叶卷积神经网络(FCNN)。在此,我们分析了两个FCNN,一个基于离散余弦变换,一个基于复值离散傅里叶变换。最后,我们将独立微结构(未使用训练集)的磁荷场与FE$^2$方法的结果进行了比较,以证明所提出的代理模型的效率。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员