项目名称: 基于Riemann问题的交通网络流体力学建模与数值求解

项目编号: No.11272199

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 张鹏

作者单位: 上海大学

项目金额: 82万元

中文摘要: 通过研究守恒高阶(CHO)模型和多车种LWR模型的交叉口Riemann问题,得到在交叉口处CHO模型齐次方程的准确Riemann解或Godunov型数值流通量,以及多车种LWR模型的Riemann近似解或近似数值流通量,从而可以构造这两类模型求解网络交通流的一阶和高阶数值格式。将上述两类模型由目前只能求解路段推广到能求解网络,其主要意义是使它们能够应用于求解动态交通分配问题。由于CHO模型能够合理描述交通流不稳定现象,如时停时走波;多车种LWR模型可描述不同车型混流和超车,上述推广应用将改进现有动态交通分配模型的合理性和适用性,有力推动涵盖极广的相关问题,如信号灯控制、交通系统可靠性分析和敏感性分析等方面的研究进展,并为智能交通系统的建设和管理提供理论依据。由于交叉口Riemann问题是经典Riemann问题的推广,课题的开展还将丰富计算流体力学和守恒律方程理论的研究内容。

中文关键词: 城市路网;交通流高阶模型;交叉口Riemann问题;均衡原理;行人流

英文摘要: Dynamic traffic assignment (DTA) problems serve as a theoretical fundamental for the establishment of the intelligent transportation system (ITS). For the passing decade, the cell-transmission (CT) model has gradually replaced the TRANSYT model for the simulation of traffic flow in DTA problems, because of its ability to describe the propagation of queue within a road section or across a junction. However, as a discrete version of the LWR model, the CT model is only able to describe the equilibrium traffic phase. That is, it simply assumes a fixed velocity-density curve in the phase plane, which does not well agree with the observation. Actually, there have been more advanced models proposed, such as the higher-order model and the multi-class model, which better depict traffic flow phenomena. Nevertheless, currently these models are only able to simulate traffic flow on a single road and therefore cannot be directly used to solve DTA problems which involve a traffic network, unless the boundary conditions at a node or junction for the homogeneous equations of these models are appropriately derived. Here, the boundary conditions refer to the numerical fluxes, which are essential to the design of a numercal scheme for soving the network. Solution for such boundary conditions gives rise to a Junction Riemann (JR)

英文关键词: urban road networks;higher-order traffic flow model;Riemann problem at a junction;equilibrium principle;pedestrian flow

成为VIP会员查看完整内容
0

相关内容

【2022新书】贝叶斯建模与Python建模
专知会员服务
141+阅读 · 2022年1月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
干货书《金融数学导论: 概念与计算方法》,290页pdf
专知会员服务
63+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
34+阅读 · 2020年11月26日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
61+阅读 · 2020年11月16日
专知会员服务
45+阅读 · 2020年11月13日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
【2022新书】贝叶斯建模与Python建模
专知
18+阅读 · 2022年1月9日
基于规则的建模方法的可解释性及其发展
专知
4+阅读 · 2021年6月23日
一图读懂粤港澳大湾区交通规划
智能交通技术
11+阅读 · 2019年4月23日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2018年10月25日
小贴士
相关主题
相关VIP内容
【2022新书】贝叶斯建模与Python建模
专知会员服务
141+阅读 · 2022年1月9日
Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
干货书《金融数学导论: 概念与计算方法》,290页pdf
专知会员服务
63+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
34+阅读 · 2020年11月26日
【干货书】金融数学概念和计算方法的导论,290页pdf
专知会员服务
61+阅读 · 2020年11月16日
专知会员服务
45+阅读 · 2020年11月13日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
25+阅读 · 2020年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员