We study the efficient approximation of highly oscillatory integrals using Filon methods. A crucial step in the implementation of these methods is the accurate and fast computation of the Filon quadrature moments. In this work we demonstrate how recurrences can be constructed for a wide class of oscillatory kernel functions, based on the observation that many physically relevant kernel functions are in the null space of a linear differential operator whose action on the Filon interpolation basis is represented by a banded (infinite) matrix. We discuss in further detail the application to two classes of particular interest, integrals with algebraic singularities and stationary points and integrals involving a Hankel function. We provide rigorous stability results for the moment computation for the first of these classes and demonstrate how the corresponding Filon method results in an accurate approximation at truly frequency-independent cost. For the Hankel kernel, we derive error estimates which describe the convergence behaviour of the method in terms of frequency and number of Filon quadrature points. Finally, we show how Filon methods with recursive moment computation can be applied to compute efficiently integrals arising in hybrid numerical-asymptotic collocation methods for high-frequency wave scattering on a screen.
翻译:我们使用 Filon 方法研究高度悬浮性构件的有效近似。 实施这些方法的一个关键步骤是准确和快速计算 Filon 二次曲线时段。 在这项工作中,我们演示如何为一系列广泛的血管内核功能构建复发性,其依据的观察是,许多与物理相关的内核功能都位于线性差分操作者的空隙中,该操作者在 Filon 内插法上的行动由一个带宽(无限) 矩阵代表。我们进一步详细讨论对两种特别感兴趣的类别的应用,即带有代数单数和定点的集成体以及汉克尔函数的固定点和集成体。我们为这些类别中的第一个在计算时段提供了严格的稳定性结果,并演示相应的Filon 方法如何以真正依赖频率的成本导致准确的近似。 对于汉克尔内圈,我们得出错误估计,它描述了该方法在Filon 二次曲线二次计算时的趋同行为,如何应用Filont 方法在混合数字屏幕上对高密度的频率进行折流测。