项目名称: 变分方法与脉冲微分系统周期解及同宿轨研究
项目编号: No.11271372
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 陈海波
作者单位: 中南大学
项目金额: 60万元
中文摘要: 变分方法是非线性分析中一种重要的基本方法,它在数理学科的许多领域都有重要且广泛的应用。脉冲微分系统是微分方程研究领域中有重要实际背景的分支。近年来,国内外学者探索应用变分方法研究脉冲微分系统解的存在性,取得了一些有重要意义的新成果。然而,关于脉冲微分系统解的理论仍有许多有待研究和探索的重要的困难的问题,如解的多重性、周期解与同宿轨等。同时,在应用变分方法研究脉冲微分方程时,对于具体问题本质的困难和复杂性依然存在,故而,对脉冲微分系统理论的研究又反过来必然推动对变分方法研究的深入。本项目探索发展和运用变分方法研究脉冲微分系统的定性性质。通过发展和运用变分方法(如临界点理论等),探求脉冲微分系统变分框架,研究脉冲微分系统(包括脉冲 Hamilton系统)解的存在性、多重性以及周期解与同宿轨。由此而产生的方法和结果的创新将不仅极大地丰富变分理论与脉冲微分系统理论,而且将促进相关学科的发展。
中文关键词: 变分方法;脉冲;微分方程;解;存在性
英文摘要: Variational method is an important and basic method for nonlinear analysis,which has extensive and important application in many fields of Mathematics and Physics. Impulsive differential system is a branch with practical background of research fields in differential equations.In recent years, Domestic and foreign scholars are working on using variational method to study the existence of solutions for impulsive differential systems and get some meaningful new achivemets. However, there are still many important and difficult problems needing to be explored and studied further,such as multiplity of solution,periodic solutions and homoclinic orbits and so on. At the same time, there are still intrinsical difficulty and complexity for concrete problems in studying impulsive differential equations with variational methods.Therfore, research on impulsive differential systems theory,conversely,give impetus to extensive study on variational method.This project explores to develop and apply variational method to study the qualitative properties of impulsive differential systems.By developing and applying variational method (such as critical point theory), we will seek the variational framework of impulsive differential systems and study the existence and multiplity of solutions and periodic solutions and homoclinic orbits
英文关键词: Variational methods;Impulsive;Differential systems;Solutions;Existence