Traditional static functional data analysis is facing new challenges due to streaming data, where data constantly flow in. A major challenge is that storing such an ever-increasing amount of data in memory is nearly impossible. In addition, existing inferential tools in online learning are mainly developed for finite-dimensional problems, while inference methods for functional data are focused on the batch learning setting. In this paper, we tackle these issues by developing functional stochastic gradient descent algorithms and proposing an online bootstrap resampling procedure to systematically study the inference problem for functional linear regression. In particular, the proposed estimation and inference procedures use only one pass over the data; thus they are easy to implement and suitable to the situation where data arrive in a streaming manner. Furthermore, we establish the convergence rate as well as the asymptotic distribution of the proposed estimator. Meanwhile, the proposed perturbed estimator from the bootstrap procedure is shown to enjoy the same theoretical properties, which provide the theoretical justification for our online inference tool. As far as we know, this is the first inference result on the functional linear regression model with streaming data. Simulation studies are conducted to investigate the finite-sample performance of the proposed procedure. An application is illustrated with the Beijing multi-site air-quality data.


翻译:传统的静态功能数据分析因数据流流不断流入而面临新的挑战。一个重大挑战是,储存这种数量不断增加的数据几乎不可能在记忆中存储。此外,现有的在线学习推论工具主要是针对有限层面问题开发的,而功能性数据的推论方法则侧重于批量学习设置。在本文件中,我们通过开发功能性随机梯度梯度下沉算法和提出在线靴带取样程序来解决这些问题,以系统研究功能性线性回归的推论问题。特别是,拟议的估算和推论程序只使用一个数据流,因此它们很容易实施,适合数据以流方式到达的情况。此外,我们确定功能性线性回归率以及拟议估算仪的随机分布。与此同时,拟议的靴状梯度测算器也表现出同样的理论属性,为我们的在线推论工具提供了理论依据。据我们所知,这是功能性线性回归模型的第一个推论结果,以流动的方式到达数据到达的数据到达的数据到达了数据流流。我们所展示的固定性数据运行程序。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月27日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员