The goal of a learning algorithm is to receive a training data set as input and provide a hypothesis that can generalize to all possible data points from a domain set. The hypothesis is chosen from hypothesis classes with potentially different complexities. Linear regression modeling is an important category of learning algorithms. The practical uncertainty of the target samples affects the generalization performance of the learned model. Failing to choose a proper model or hypothesis class can lead to serious issues such as underfitting or overfitting. These issues have been addressed by alternating cost functions or by utilizing cross-validation methods. These approaches can introduce new hyperparameters with their own new challenges and uncertainties or increase the computational complexity of the learning algorithm. On the other hand, the theory of probably approximately correct (PAC) aims at defining learnability based on probabilistic settings. Despite its theoretical value, PAC does not address practical learning issues on many occasions. This work is inspired by the foundation of PAC and is motivated by the existing regression learning issues. The proposed approach, denoted by epsilon-Confidence Approximately Correct (epsilon CoAC), utilizes Kullback Leibler divergence (relative entropy) and proposes a new related typical set in the set of hyperparameters to tackle the learnability issue. Moreover, it enables the learner to compare hypothesis classes of different complexity orders and choose among them the optimum with the minimum epsilon in the epsilon CoAC framework. Not only the epsilon CoAC learnability overcomes the issues of overfitting and underfitting, but it also shows advantages and superiority over the well known cross-validation method in the sense of time consumption as well as in the sense of accuracy.


翻译:回归模型的可学习性、样本复杂度和假设类复杂度 一个学习算法的目标是接收一个训练数据集并提供一个可以泛化到来自一个域集中所有可能数据点的假设。假设是从可能具有不同复杂度的假设类中选择的。线性回归建模是学习算法的一个重要类别。实际目标样本的不确定性会影响所学习模型的泛化性能。选择错误的模型或假设类可能会导致严重的问题,例如欠拟合或过拟合。这些问题可以通过交替成本函数或使用交叉验证方法来解决。这些方法可能会引入新的超参数,带来它们自己的新挑战和不确定性,或增加学习算法的计算复杂度。另一方面,基于概率近似正确理论(PAC)旨在基于概率设置来定义可学习性。尽管它的理论价值,但在许多场合下PAC不解决实际学习问题。这项工作受到PAC基础的启示,并受到现有回归学习问题的推动。所提出的方法,称为ε-置信大致正确(ε CoAC),利用Kullback-Leibler散度(相对熵)提出了一个新的相关典型集,以解决可学习性问题。此外,它使学习者可以比较不同复杂度阶级的假设类,选择其中具有最小ε的最优类,在ε CoAC框架中。ε CoAC学习可不仅克服过拟合和欠拟合问题,而且在时间消耗和准确性方面也展现出优越性,比知名的交叉验证方法更好。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
14+阅读 · 2021年5月21日
深度学习高温蒸馏:Softmax With Temperature
PaperWeekly
1+阅读 · 2022年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
1+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月16日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
14+阅读 · 2021年5月21日
相关资讯
深度学习高温蒸馏:Softmax With Temperature
PaperWeekly
1+阅读 · 2022年11月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员