Graph neural networks (GNNs) achieve remarkable performance in graph machine learning tasks but can be hard to train on large-graph data, where their learning dynamics are not well understood. We investigate the training dynamics of large-graph GNNs using graph neural tangent kernels (GNTKs) and graphons. In the limit of large width, optimization of an overparametrized NN is equivalent to kernel regression on the NTK. Here, we investigate how the GNTK evolves as another independent dimension is varied: the graph size. We use graphons to define limit objects -- graphon NNs for GNNs, and graphon NTKs for GNTKs, and prove that, on a sequence of growing graphs, the GNTKs converge to the graphon NTK. We further prove that the eigenspaces of the GNTK, which are related to the problem learning directions and associated learning speeds, converge to the spectrum of the GNTK. This implies that in the large-graph limit, the GNTK fitted on a graph of moderate size can be used to solve the same task on the large-graph and infer the learning dynamics of the large-graph GNN. These results are verified empirically on node regression and node classification tasks.
翻译:图像神经网络(GNNS)在图形机器学习任务中取得显著的成绩,但很难在大型数据上进行大图数据培训,因为其学习动态不很清楚。 我们使用图形相近内核和图形,调查大型GNNS的训练动态。 在宽度的限度内, 超分化的NNN的优化相当于NTK的内核回归。 在这里, 我们调查GNTK如何演变成另一个独立的层面: 图形大小。 我们使用图形来定义限制对象 -- -- GNNNS的图形NNNS和GNTK的图形NTKs, 并证明在不断增长的图表序列内, GNTK的组合会与图内核回归。 我们进一步证明, GNTK 的脑空间与问题学习方向和相关学习速度有关, 与GNTK的频谱相融合。 这意味着在大绘图的界限内, GNTK 安装在中等规模的图形上的GNTK不能够用来校验大型的校正结果。