Domain generalization (DG) aims at learning a model on source domains to well generalize on the unseen target domain. Although it has achieved great success, most of existing methods require the label information for all training samples in source domains, which is time-consuming and expensive in the real-world application. In this paper, we resort to solving the semi-supervised domain generalization (SSDG) task, where there are a few label information in each source domain. To address the task, we first analyze the theory of the multi-domain learning, which highlights that 1) mitigating the impact of domain gap and 2) exploiting all samples to train the model can effectively reduce the generalization error in each source domain so as to improve the quality of pseudo-labels. According to the analysis, we propose MultiMatch, i.e., extending FixMatch to the multi-task learning framework, producing the high-quality pseudo-label for SSDG. To be specific, we consider each training domain as a single task (i.e., local task) and combine all training domains together (i.e., global task) to train an extra task for the unseen test domain. In the multi-task framework, we utilize the independent BN and classifier for each task, which can effectively alleviate the interference from different domains during pseudo-labeling. Also, most of parameters in the framework are shared, which can be trained by all training samples sufficiently. Moreover, to further boost the pseudo-label accuracy and the model's generalization, we fuse the predictions from the global task and local task during training and testing, respectively. A series of experiments validate the effectiveness of the proposed method, and it outperforms the existing semi-supervised methods and the SSDG method on several benchmark DG datasets.
翻译:域常规化 (DG) 旨在学习源域模型, 以在无形目标域上全面推广。 虽然已经取得了巨大成功, 但大多数现有方法都需要为源域的所有培训样本提供标签信息, 而源域域域内使用耗时且成本昂贵。 在本文中, 我们寻求解决半监管域域常规化( SSDG) 任务, 在每个源域内都有一些高品质的伪标签。 为了解决这个问题, 我们首先分析多域学习理论的理论, 其中强调:(1) 减轻域域间差距的影响;(2) 利用所有样本来培训模型, 能够有效减少每个源域内所有集域的通用精确化错误, 以提高伪标签的质量。 根据分析, 我们建议多Match, 也就是说, 将SixMatch 扩大到多任务学习框架, 生成高品质的伪标签。 具体地, 我们把每个培训域域域的模型视为一个单一任务( i), 本地任务) 和所有训练域内( i. global) 的模型可以一起( ), 全球任务) 来, 来, 来, 将每个训练域域域域域内 都使用经过训练的常规,,,, 校域域域域域域域域域内,,,,,,,,,, 校域域内, 使用经过训练的, 校内, 校内, 校内, 校内, 校内, 校内, 校内, 校内, 校内, 校内, 校内, 校内, 。