Given a family of squares in the plane, their packing problem asks for the maximum number, $\nu$, of pairwise disjoint squares among them, while their hitting problem asks for the minimum number, $\tau$, of points hitting all of them, $\tau \ge \nu$. Both problems are NP-hard even if all the rectangles are unit squares and their sides are parallel to the axes. The main results of this work are providing the first bounds for the $\tau / \nu$ ratio on not necessarily axis-parallel squares. We establish an upper bound of $6$ for unit squares and $10$ for squares of varying sizes. The worst ratios we can provide with examples are $3$ and $4$, respectively. For comparison, in the axis-parallel case, the supremum of the considered ratio is in the interval $[\frac{3}{2},2]$ for unit squares and $[\frac{3}{2},4]$ for arbitrary squares. The new bounds necessitate a mixture of novel and classical techniques of possibly extendable use. Furthermore, we study rectangles with a bounded "aspect ratio", where the aspect ratio of a rectangle is the larger side of a rectangle divided by its smaller side. We improve on the well-known best $\tau/\nu$ bound, which is quadratic in terms of the aspect ratio. We reduce it from quadratic to linear for rectangles, even if they are not axis-parallel, and from linear to logarithmic, for axis-parallel rectangles. Finally, we prove similar bounds for the chromatic numbers of squares and rectangles with a bounded aspect ratio.
翻译:鉴于平面上的方形, 他们的包装问题要求他们中间对齐断开的方形的最大值为$\nu$, 而他们的碰撞问题要求最小值为$\tau$, 所有点的点的最小值为$tau\ge\ nu$。 这两个问题都是 NP- 硬的, 即使所有的矩形都是单位方形, 其侧面与轴线平行。 这项工作的主要结果为 $\ tau /\ nu$ 提供了最大值, 不一定是轴对齐方形方形的方形最大值为$\ 美元, 而他们要求单位方形和方形的最低值为$$$$1, 最差的比值分别为$3美元和$4美元。 相比之下, 在轴面方形方形方形方形中, 所考虑的比值是 $ $[frafrc] 的中间值是 2, 单位方形方形平面的平面比值为$2美元, 方形方形比值比值为: 我们方形方形方形方形方的正方形的正方形的正方形比值和正方形的正方形的正方形的比, 的正方形的正方形的比值为“, 的正方形的正方形的正方形的正方形的正方值为正方形,,, 的正方形的正方形的正方和正方形的正方形的正方形的正方, 的正方形的正方形的正方值为正方形的正方形的正方形的正方形的正方形的正方, 的正方形的正方形的正方形的正方形的正方形的正方形的正方, 的正方的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的正方形的