Compositional data arise in many real-life applications and versatile methods for properly analyzing this type of data in the regression context are needed. When parametric assumptions do not hold or are difficult to verify, non parametric regression models can provide a convenient alternative method for prediction. To this end, we consider an extension to the classical $k$-$NN$ regression, termed $\alpha$-$k$-$NN$ regression, that yields a highly flexible non-parametric regression model for compositional data through use of the $\alpha$-transformation. Our model is further extended to the $\alpha$-kernel regression by adopting the Nadaraya-Watson estimator. Unlike many of the recommended regression models for compositional data, zeros values (which commonly occur in practice) are not problematic and they can be incorporated into the proposed models without modification. Extensive simulation studies and real-life data analyses highlight the advantage of using these non-parametric regressions for complex relationships between the compositional response data and Euclidean predictor variables. Both suggest that $\alpha$-$k$-$NN$ and $\alpha$-kernel regressions can lead to more accurate predictions compared to current regression models which assume a, sometimes restrictive, parametric relationship with the predictor variables. In addition, the $\alpha$-$k$-$NN$ regression, in contrast to $\alpha$-kernel regression, enjoys a high computational efficiency rendering it highly attractive for use with large scale, massive, or big data.
翻译:许多实际生活中应用的构成数据和在回归背景下正确分析这类数据所需的多种方法都产生了构成数据。当参数假设不成立或难以核实时,非参数回归模型可以为预测提供一个方便的替代方法。为此,我们认为,将经典美元-NN美元回归法(称为$\alpha$-k美元-NN美元回归法)延期,称为美元-美元-NN美元回归法,通过使用美元-变换法,为组成数据产生高度灵活的非参数回归模型。我们的模型进一步扩展至以美元-内核为单位的回归法,采用纳达拉亚-沃特森估测仪。与许多建议的构成数据回归模型不同,零值(在实践中通常发生)没有问题,可以在不作修改的情况下被纳入拟议模型。 广泛的模拟研究和真实数据分析突出表明,使用这些非参数回归法的优势在于组成反应数据和Eucliidean 预测变量之间的复杂关系。 两种模型都表明,以美元-美元-美元-美元-美元-内值-正值-正值-正折率模型,有时以高正折价-正值-正态数据-正反变法关系,可以假设-正反比值-正值-正值-正值-正值-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正-正-正数-正数-正-正-正-正-正-正数-正数-正-正-正-正-正数-正数-正-正-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正