Compositional data arise in many real-life applications and versatile methods for properly analyzing this type of data in the regression context are needed. When parametric assumptions do not hold or are difficult to verify, non parametric regression models can provide a convenient alternative method for prediction. To this end, we consider an extension to the classical $k$-$NN$ regression, termed $\alpha$-$k$-$NN$ regression, that yields a highly flexible non-parametric regression model for compositional data through use of the $\alpha$-transformation. Our model is further extended to the $\alpha$-kernel regression by adopting the Nadaraya-Watson estimator. Unlike many of the recommended regression models for compositional data, zeros values (which commonly occur in practice) are not problematic and they can be incorporated into the proposed models without modification. Extensive simulation studies and real-life data analyses highlight the advantage of using these non-parametric regressions for complex relationships between the compositional response data and Euclidean predictor variables. Both suggest that $\alpha$-$k$-$NN$ and $\alpha$-kernel regressions can lead to more accurate predictions compared to current regression models which assume a, sometimes restrictive, parametric relationship with the predictor variables. In addition, the $\alpha$-$k$-$NN$ regression, in contrast to $\alpha$-kernel regression, enjoys a high computational efficiency rendering it highly attractive for use with large scale, massive, or big data.


翻译:许多实际生活中应用的构成数据和在回归背景下正确分析这类数据所需的多种方法都产生了构成数据。当参数假设不成立或难以核实时,非参数回归模型可以为预测提供一个方便的替代方法。为此,我们认为,将经典美元-NN美元回归法(称为$\alpha$-k美元-NN美元回归法)延期,称为美元-美元-NN美元回归法,通过使用美元-变换法,为组成数据产生高度灵活的非参数回归模型。我们的模型进一步扩展至以美元-内核为单位的回归法,采用纳达拉亚-沃特森估测仪。与许多建议的构成数据回归模型不同,零值(在实践中通常发生)没有问题,可以在不作修改的情况下被纳入拟议模型。 广泛的模拟研究和真实数据分析突出表明,使用这些非参数回归法的优势在于组成反应数据和Eucliidean 预测变量之间的复杂关系。 两种模型都表明,以美元-美元-美元-美元-美元-内值-正值-正值-正折率模型,有时以高正折价-正值-正态数据-正反变法关系,可以假设-正反比值-正值-正值-正值-正值-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正-正-正数-正数-正-正-正-正-正-正数-正数-正-正-正-正-正数-正数-正-正-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正数-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正-正

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员