In this paper we study the computation of the nonparametric maximum likelihood estimator (NPMLE) in multivariate mixture models. Our first approach discretizes this infinite dimensional convex optimization problem by fixing the support points of the NPMLE and optimizing over the mixture proportions. In this context we propose, leveraging the sparsity of the solution, an efficient and scalable semismooth Newton based augmented Lagrangian method (ALM). Our algorithm beats the state-of-the-art methods~\cite{koenker2017rebayes, kim2020fast} and can handle $n \approx 10^6$ data points with $m \approx 10^4$ support points. Our second procedure, which combines the expectation-maximization (EM) algorithm with the ALM approach above, allows for joint optimization of both the support points and the probability weights. For both our algorithms we provide formal results on their (superlinear) convergence properties. The computed NPMLE can be immediately used for denoising the observations in the framework of empirical Bayes. We propose new denoising estimands in this context along with their consistent estimates. Extensive numerical experiments are conducted to illustrate the effectiveness of our methods. In particular, we employ our procedures to analyze two astronomy data sets: (i) Gaia-TGAS Catalog~\cite{anderson2018improving} containing $n \approx 1.4 \times 10^6$ data points in two dimensions, and (ii) the $d=19$ dimensional data set from the APOGEE survey~\cite{majewski2017apache} with $n \approx 2.7 \times 10^4$.
翻译:在本文中, 我们研究多变量混合物模型中非参数最大可能性估计值的计算 {NPMLE {NPMLE {NPMLE } 。 我们的第一种方法通过修正 NNPLLE 的支持点和优化混合物比例, 将这个无限的维维度优化问题分解开来。 在这方面, 我们提议, 利用解决方案的广度、 高效且可缩放的半脱毛性牛顿 增强Lagrangian 方法( ALM ) 。 我们的算法击败了最先进的方法 $20, cite{koenker2017rebayes, kim202020fast} 。 我们的算法可以直接用来解析 $40_Approx 10 6 的数据点, 用 $10_Approxx 支持点 。 我们的计算方法将预期- markax 的算法结合了 ALM 支持点和 ALM 方法。