Large Neighborhood Search (LNS) is a popular heuristic for solving combinatorial optimization problems. LNS iteratively explores the neighborhoods in solution spaces using destroy and repair operators. Determining the best operators for LNS to solve a problem at hand is a labor-intensive process. Hence, Adaptive Large Neighborhood Search (ALNS) has been proposed to adaptively select operators during the search process based on operator performances of the previous search iterations. Such an operator selection procedure is a heuristic, based on domain knowledge, which is ineffective with complex, large solution spaces. In this paper, we address the problem of selecting operators for each search iteration of ALNS as a sequential decision problem and propose a Deep Reinforcement Learning based method called Deep Reinforced Adaptive Large Neighborhood Search. As such, the proposed method aims to learn based on the state of the search which operation to select to obtain a high long-term reward, i.e., a good solution to the underlying optimization problem. The proposed method is evaluated on a time-dependent orienteering problem with stochastic weights and time windows. Results show that our approach effectively learns a strategy that adaptively selects operators for large neighborhood search, obtaining competitive results compared to a state-of-the-art machine learning approach while trained with much fewer observations on small-sized problem instances.


翻译:大型邻里搜索( LNS) 是用来解决组合优化问题的流行杂交。 LNS 使用破坏和修理操作员来反复探索解决方案空间中的邻里。 确定 LNS 最佳操作员来解决手头问题是一个劳动密集型过程。 因此, 推荐适应性大邻里搜索( ALNS) 给在搜索过程中根据先前搜索迭代操作员的操作员表现进行适应性选择的操作员。 这种操作员选择程序是一种超常, 以域知识为基础, 与复杂、 大型解决方案空间不起作用。 在本文中, 我们解决了为每次搜索 ALNS 的循环选择操作员的问题, 将其作为一个连续决定问题。 确定 LNS 最佳操作员解决手头问题的方法是一个劳动密集型的过程。 因此, 拟议的方法旨在根据搜索过程的状态进行适应性选择, 以获得高长期的奖励。 也就是说, 对潜在的优化问题有一个良好的解决方案。 拟议的方法是用一个时间依赖性或方向性的问题来评估, 与精细的观测器进行每次搜索, 进行连续的重复的操作员,, 并提出深思广的学习方法,, 并同时学习一个高超小的智能搜索方法,, 学习一个大的机器学习,, 学习 学习一个大的,,, 学习 学习 并学习一个有竞争力的,,,, 并且,,, 学习 学习,,,,,,, 以 以 以 快速 学习 学习,, 的,,, 学习, 的,, 学习 学习 学习, 学习 学习 的 的,,,,,,,,,,,,,,,,,, 的,,,,,,, 和,,,, 快速, 和,,,,,,,,,,,,,,, 学习,, 和 和,,,,, 学习, 学习 学习 学习

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月23日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员