Feature transformation aims to extract a good representation (feature) space by mathematically transforming existing features. It is crucial to address the curse of dimensionality, enhance model generalization, overcome data sparsity, and expand the availability of classic models. Current research focuses on domain knowledge-based feature engineering or learning latent representations; nevertheless, these methods are not entirely automated and cannot produce a traceable and optimal representation space. When rebuilding a feature space for a machine learning task, can these limitations be addressed concurrently? In this extension study, we present a self-optimizing framework for feature transformation. To achieve a better performance, we improved the preliminary work by (1) obtaining an advanced state representation for enabling reinforced agents to comprehend the current feature set better; and (2) resolving Q-value overestimation in reinforced agents for learning unbiased and effective policies. Finally, to make experiments more convincing than the preliminary work, we conclude by adding the outlier detection task with five datasets, evaluating various state representation approaches, and comparing different training strategies. Extensive experiments and case studies show that our work is more effective and superior.
翻译:地貌变迁的目的是通过数学转换现有特征来获取一个良好的代表(地貌)空间; 关键是要解决维度的诅咒,加强模型的概括化,克服数据宽度,并扩大经典模型的可用性; 目前的研究侧重于以知识为基础的领域特征工程或学习潜在表现; 然而,这些方法并不是完全自动化的,无法产生一个可追踪和最佳的展示空间。 在为机器学习任务重建一个特征空间时,能否同时解决这些局限性? 在本次扩展研究中,我们提出了一个功能变迁的自我优化框架。 为了实现更好的绩效,我们改进了初步工作:(1) 获得一个先进的国家代表,使强化的代理更好地理解当前设置的特征;(2) 解决强化的代理方在不偏袒和有效政策方面的价值高估问题。 最后,为了使实验比初步工作更具有说服力,我们最后将外部检测任务增加五个数据集,评估各种国家代表性方法,比较不同的培训战略。 广泛的实验和案例研究表明,我们的工作更有效和更优越。