In the context of an efficient network traffic engineering process where the network continuously measures a new traffic matrix and updates the set of paths in the network, an automated process is required to quickly and efficiently identify when and what set of paths should be used. Unfortunately, the burden of finding the optimal solution for the network updating process in each given time interval is high since the computation complexity of optimization approaches using linear programming increases significantly as the size of the network increases. In this paper, we use deep reinforcement learning to derive a data-driven algorithm that does the path selection in the network considering the overhead of route computation and path updates. Our proposed scheme leverages information about past network behavior to identify a set of robust paths to be used for multiple future time intervals to avoid the overhead of updating the forwarding behavior of routers frequently. We compare the results of our approach to other traffic engineering solutions through extensive simulations across real network topologies. Our results demonstrate that our scheme fares well by a factor of 40% with respect to reducing link utilization compared to traditional TE schemes such as ECMP. Our scheme provides a slightly higher link utilization (around 25%) compared to schemes that only minimize link utilization and do not care about path updating overhead.
翻译:在高效的网络交通工程流程中,网络不断测量新的交通信息总库并更新网络路径集,在此背景下,需要有一个自动化程序来快速和高效地确定何时和应使用哪些路径组。不幸的是,在每个特定时间间隔内找到网络更新进程的最佳解决方案的负担非常沉重,因为随着网络规模的扩大,使用线性编程优化方法的计算复杂性会随着网络规模的扩大而大幅提高。在本文件中,我们利用深度强化学习得出数据驱动算法,在网络中选择路径,以考虑到线路计算和路径更新的间接费用。我们的拟议计划利用关于过去网络行为的信息,确定一套未来多个时间间隔期间使用的稳健路径,以避免经常更新路由路由者转发行为的间接费用。我们通过在实际网络地形上的广泛模拟,将我们的方法与其他交通工程解决方案进行比较。我们的结果表明,与像ECMP这样的传统TE计划相比,我们的计划在减少连接利用率方面有很大40%的系数。我们的计划提供了略高一点链接利用率(约25%),而有关计划仅尽量减少链接利用率和不关心路径更新间接费用的计划则比较。