We present a novel up-resing technique for generating high-resolution liquids based on scene flow estimation using deep neural networks. Our approach infers and synthesizes small- and large-scale details solely from a low-resolution particle-based liquid simulation. The proposed network leverages neighborhood contributions to encode inherent liquid properties throughout convolutions. We also propose a particle-based approach to interpolate between liquids generated from varying simulation discretizations using a state-of-the-art bidirectional optical flow solver method for fluids in addition to a novel key-event topological alignment constraint. In conjunction with the neighborhood contributions, our loss formulation allows the inference model throughout epochs to reward important differences in regard to significant gaps in simulation discretizations. Even when applied in an untested simulation setup, our approach is able to generate plausible high-resolution details. Using this interpolation approach and the predicted displacements, our approach combines the input liquid properties with the predicted motion to infer semi-Lagrangian advection. We furthermore showcase how the proposed interpolation approach can facilitate generating large simulation datasets with a subset of initial condition parameters.
翻译:我们还提出了一个利用深神经网络根据现场流量估计产生高分辨率液体的新颖的升级技术。我们的方法推断和综合了仅仅来自低分辨率粒子液体模拟的小型和大型细节。拟议的网络利用周边贡献在整个演化过程中对内在液体特性进行编码。我们还提出了一个基于粒子的方法,利用一种最先进的双向双向双向光流解解液法,对液体进行模拟分解,再加上一个新的关键事件表层调整限制。我们的方法结合周边的贡献,我们的损失配方允许整个各个区进行推论,以奖励模拟离异性方面的重要差异。即使应用未经试验的模拟装置,我们的方法也能产生可信的高分辨率细节。我们的方法将输入液体特性与预测的动作结合起来,推导出半Lagrangian advection。我们进一步展示了拟议的干涉方法如何能够帮助产生大型模拟数据集成一个初始状态的子参数。