Incentive salience attribution can be understood as a psychobiological process ascribing relevance to potentially rewarding objects and actions. Despite being an important component of the motivational process guiding our everyday behaviour its study in naturalistic contexts is not straightforward. Here we propose a methodology based on artificial neural networks (ANNs) for approximating latent states produced by this process in situations where large volumes of behavioural data are available but no strict experimental control is possible. Leveraging knowledge derived from theoretical and computational accounts of incentive salience attribution we designed an ANN for estimating duration and intensity of future interactions between individuals and a series of video games in a large-scale ($N> 3 \times 10^6$) longitudinal dataset. Through model comparison and inspection we show that our approach outperforms competing ones while also generating a representation that well approximate some of the functions of attributed incentive salience. We discuss our findings with reference to the adopted theoretical and computational frameworks and suggest how our methodology could be an initial step for estimating attributed incentive salience in large scale behavioural studies.
翻译:激励显著的归属可被理解为一种与潜在奖励目标和行动相关的心理生物学过程。尽管它是指导我们日常行为的激励过程的重要组成部分,但在自然环境中的研究并非直截了当。在这里,我们建议一种基于人工神经网络的方法,用于在有大量行为数据但不可能进行严格实验控制的情况下由这一过程产生的近似潜在国家。我们利用从奖励显著属性的理论和计算账户中获得的知识,设计了一种ANN,用于在大规模(N > 3\ times 10 ⁇ 6$)中估计个人之间未来互动的时间和强度以及一系列视频游戏的纵向数据集。我们通过模型比较和检查表明,我们的方法优于相互竞争的神经网络,同时产生一种非常接近被授予奖励显著的某些功能的代表性。我们讨论我们的调查结果时参考了所采用的理论和计算框架,并建议我们的方法如何成为在大规模行为研究中估计被授予的奖励显著特征的第一步。