We present CortexODE, a deep learning framework for cortical surface reconstruction. CortexODE leverages neural ordinary different equations (ODEs) to deform an input surface into a target shape by learning a diffeomorphic flow. The trajectories of the points on the surface are modeled as ODEs, where the derivatives of their coordinates are parameterized via a learnable Lipschitz-continuous deformation network. This provides theoretical guarantees for the prevention of self-intersections. CortexODE can be integrated to an automatic learning-based pipeline, which reconstructs cortical surfaces efficiently in less than 6 seconds. The pipeline utilizes a 3D U-Net to predict a white matter segmentation from brain Magnetic Resonance Imaging (MRI) scans, and further generates a signed distance function that represents an initial surface. Fast topology correction is introduced to guarantee homeomorphism to a sphere. Following the isosurface extraction step, two CortexODE models are trained to deform the initial surface to white matter and pial surfaces respectively. The proposed pipeline is evaluated on large-scale neuroimage datasets in various age groups including neonates (25-45 weeks), young adults (22-36 years) and elderly subjects (55-90 years). Our experiments demonstrate that the CortexODE-based pipeline can achieve less than 0.2mm average geometric error while being orders of magnitude faster compared to conventional processing pipelines.
翻译:我们展示了CortexODE, 这是一种用于皮质表面重建的深学习框架。 CortexODE 利用神经普通不同方程式(ODEs) 将神经普通方程式(ODEs) 利用神经普通方程式(ODEs) 将输入面变形成一个目标形状。 表面各点的轨迹模型以ODEs为模型, 其坐标的衍生物通过可学习的Lipschitz- 持续脱形网络进行参数化。 这为预防自冰面重建提供了理论保障。 CortexODE可以整合到一个自动学习的管道, 从而在不到6秒的时间里高效地重建皮表面。 管道使用 3D U-Net 来预测大脑磁共振成像(MRI) 扫描中的白色物质分割, 进一步生成一个代表初始表面的签名距离函数。 快速的表层校校校校修正是为了保证一个球体的内土形态。 在表层提取步骤之后, 两种CortexODE模型可以将初始表层的表层变成白物质和皮质表面表面表面。 比较快的管道的长度的40年, 。 拟议的管道将显示为22年的年的神经实验,, 的年的年的年的神经实验为22级的年, 显示的实验为22级的年的实验为22级的年的年, 。