The expensive annotation cost is notoriously known as the main constraint for the development of the point cloud semantic segmentation technique. Active learning methods endeavor to reduce such cost by selecting and labeling only a subset of the point clouds, yet previous attempts ignore the spatial-structural diversity of the selected samples, inducing the model to select clustered candidates with similar shapes in a local area while missing other representative ones in the global environment. In this paper, we propose a new 3D region-based active learning method to tackle this problem. Dubbed SSDR-AL, our method groups the original point clouds into superpoints and incrementally selects the most informative and representative ones for label acquisition. We achieve the selection mechanism via a graph reasoning network that considers both the spatial and structural diversities of superpoints. To deploy SSDR-AL in a more practical scenario, we design a noise-aware iterative labeling strategy to confront the "noisy annotation" problem introduced by the previous "dominant labeling" strategy in superpoints. Extensive experiments on two point cloud benchmarks demonstrate the effectiveness of SSDR-AL in the semantic segmentation task. Particularly, SSDR-AL significantly outperforms the baseline method and reduces the annotation cost by up to 63.0% and 24.0% when achieving 90% performance of fully supervised learning, respectively.
翻译:昂贵的注解成本被臭名昭著地称为开发点云语分解技术的主要制约因素。 积极的学习方法通过只选择和标出点云的一小部分来努力降低这种成本, 但先前的尝试忽略了选定样本的空间结构多样性, 导致模型选择在本地区域具有类似形状的集群候选人, 却忽略了全球环境中的其他具有代表性的候选人。 在本文中, 我们提出了一个新的基于 3D 区域的积极学习方法来解决这个问题。 被命名为 SSDR- AL, 我们的方法将原始点云分为超级点, 并逐步选择了获取标签所需的最丰富和最具代表性的云。 我们通过图表推理网络实现选择机制, 既考虑超点的空间和结构多样性。 为了在更实际的场景中部署 SSDR- AL, 我们设计一个有噪音意识的迭代标签战略来应对前“ 流行标记” 战略在超级点中引入的“ 注意” 问题。 在两个点上将原始点云云云云归为超级点, 并逐渐选择了获取标签所需的最丰富和最具代表性的云。 我们通过一个图表推算网络实现了选择机制机制机制, 将SDRDRDR-AL 4 %, 和完全降低了SDRDRM 的进度 的进度 任务, 。